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1. Introduction 
 
Data analysis in FMRI could be performed in one grand multilevel 
model that incorporates both within- and cross-subjects variabilities. 
However, it is due to the presence of both variance components that 
such a nonlinear model makes computation currently impractical, 
forcing analysts to adopt a two-stage approach: individual analysis 
with a time series regression model that explores activations in 
individual brains, and group analysis that integrates the results from 
all subjects. 
 
Although it’s been suggested that a frequentist approach in group 
analysis is unavailable in estimating variance components [1], we 
present here a computationally more economical method in a 
classical context than the Bayesian approach [1,2], while achieving 
equally valid inference by considering the effect precision from each 
subject. Our algorithms involve voxel-wise iterative schemes, and the 
computational cost is relatively low despite such an approach is 
considered computationally unmanageable [3]. 
 
2. Method 
 
The conventional group analysis assumes the within-subject 
variability relatively small or roughly the same across subjects [4]. 
The corresponding model  
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b = XTa + d 
 
implies that the effect estimate of interest (typically referred to as β 
value), b, is accurate from individual level, with the precision 
information (estimated via the corresponding t-statistic) ignored at the 
group level, where the columns of design matrix X are either indicator 



variables showing, for example, the group to which a subject belongs, 
or a subject-specific covariate such as IQ or behavioral data, a is 
group effect vector, and d is subject-specific error vector. 
 
So much effort has been invested in modeling the temporal 
correlation in the FMRI regression model at individual level, leading to 
relatively more accurate statistical testing [5,6,7]. Such an effort 
should not stop there, and can further lead to more fruitful results by 
bringing the precision information about the effect of interest to group 
analysis. Here we consider a mixed-effects meta analysis (MEMA) 
model, 
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b = XTa + d+ e,          (1) 
 
where e is the vector of sample errors from individual level, with a 
normal distribution with known variance. With model (1), the total 
variability in b is considered from two sources, within-subject and 
cross-subjects variability. 
 
We estimate the cross-subject variance for d by maximizing the 
profile residual log-likelihood for the restricted maximum likelihood 
(REML) [8], estimate the group effect through weighted least squares 
(WLS). 
 
To be able to deal with outliers in model (1), we assume a Laplace 
distribution for the subject-specific error term d, whose two heavier 
tails than normal distribution allow us to provide a more robust 
approach to alleviating the disturbing effect from outliers without 
arbitrary decision (e.g., data removal) [9]. Although REML does not 
exist due to the introduction of Laplace distribution, our algorithm 
based on maximum likelihood estimate shows improved statistical 
power when outliers occur. 
 
 
3. Results 
 
A comparison of a paired-sample analysis shows that our model 
provides a more powerful detection of activation at most voxels 
compared to the conventional paired t-test (Fig. 1). 
 



With heteroscedastic sampling precision incorporated in a MEMA 
model, we not only run a more accurate statistical testing, but also 
are able to estimate the heterogeneity measure (cross-subject 
variance) and test for its significance with Q-statistic. Furthermore, we 
can obtain the proportion of total variability that is within each subject, 
closely related to the popular concept of intraclass correlation (ICC). 
In addition, a Wald Z-test gives a significance test about the residuals 
of each subject, serving as another indicator of voxels or regions 
where a subject has exceptionally high or low effect/reliability. 
Combining the heterogeneity measure, the homogeneity Q-test, and 
the Wald test, one may be able to detect outlier regions or subjects, 
and to further investigate the possibility of including covariates or 
grouping subjects, thus fine-tuning the original model and increasing 
the statistical power. 
 
Our program 3dMEMA is implemented in open source statistical 
language R [10] based algorithms discussed here, fully taking 
advantage of parallel computing with multi-core systems. In addition 
to gaining statistical power for the group effect of interest at most 
regions, this meta analysis approach leads to less spurious isolated 
voxels in the final result, alleviating some unnecessary FDR penalty 
during multiple testing correction.  
 
As our algorithm for REML is reasonably efficient, the convergence is 
achieved within a few iterations at most voxels, leading to a runtime 
of a few minutes for a typical group analysis on a Mac OS X system 
with two 2.66 GHz dual-core Intel Xeon processors. 
 
4. Conclusion 
 
By considering a MEMA model with effect estimate and its precision 
from individual analysis, we adopt the conventional perspective, and 
use WLS method through maximizing the REML function. The 
program handles one-, two-, and paired-sample test types, and 
covariates are also allowed to control cross-subject variability. In 
addition to group effect estimate and its statistic, it also provides 
cross-subject heterogeneity estimate and a chi-square test for its 
significance, the percentage of within-subject variability relative to the 
total variance in the data, and a Z-statistic indicating the probability a 
subject is an outlier at a region. 



 
Our new group analysis approach is computationally economical, and 
generally more powerful and valid than the conventional method of 
ignoring the effect estimate reliability from individual subjects.  It is 
also relatively robust against outliers in the group data. The software 
is in open-source R and available for download. 
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Figure 1. (A) Histogram of t-statistic difference: 3dMEMA gained 
power with a threshold of 2.0 for t(30) than the conventional approach 
with a paired t-test as shown by the majority of significant voxels at 
the right-hand side of the original at the x-axis. (B) Surface map of t-
statistic difference: red >= 2.8, 1.7 ≤ orange < 2.8; 0.5 ≤ yellow < 1.7; 
-0.5 ≤ green < 0.5; blue ≤ -0.5) with a threshold of 2.0 for t(30). 
Courtesy of Vincent Costa, Univ. of Florida. 
 


