
Conclusions

References
[1] Cox, RW. et.al. (1997). NMR in Biomedicine 10(4-5):171-178.
[2] http://nifti.nimh.nih.gov/nifti-1/
[3] The MathWorks, Inc.
[4] AFNI Matlab library: http://afni.nimh.nih.gov/afni/matlab
[5] afni.nimh.nih.gov/afni/doc/misc/NIML_documentation/NIML_manual

Reprint Requests:  ziad@nih.gov

Software Implementation 

The proposed methods have been implemented and included with the
distribution of AFNI and SUMA http://afni.nimh.nih.gov

See also: Poster Mon. AM #451 by R. W. Cox et al.

Poster Tue. PM #428 by P. Christidis et al.

We have presented a set of tools that allow users and
developers to make use of AFNI’s extensive data navigation
with relatively little, if any, overhead.

These tools can also be used to automate repeated
sequences of GUI interactions which quickly become tedious
when dealing with large numbers of data sets.

Examining the results of stripping the skull of 300
brains.
Pinpointing and pinpointing origins of failure in complex
iterative methods such as during surface-based filtering,
warping or skull-stripping.
Detecting subject motion or scanner-induced artifacts
promptly.

These tools, along with the adoption of NIfTI-1[2] format, further facilitate data processing across multiple applications. They also facilitate systematic examination of large numbers of data sets.

Talk To Me: 
Inter-Program Communication for Brain Data Analysis 

Ziad S. Saad, Richard C. Reynolds, Robert W. Cox
Scientific and Statistical Computing Core; National Institute of Mental Health

National Institutes of Health; Department of Health and Human Services; Bethesda MD, USA

Preamble

Hands-OFF Mode

Applications communicate with AFNI via a program called ‘plugout_drive’ which sends a series of
commands and associated data to AFNI for execution.

+ Program called via “system” function (shell invocation)
+ No need to manage sockets or format and transmit commands
+ User Interaction with AFNI/SUMA GUI is uninterrupted

plugout_drive
Sample commands (out of 40+ options,
See README.driver for complete list ):

OPEN_GRAPH_1D
OPEN_PANEL
SAVE_JPEG

SET_ANATOMY
SET_DICOM_XYZ
SET_FUNCTION
SET_SUBBRICKS
SET_THRESHOLD

Excerpts from: Test_TellAfni.m
(Distributed with AFNI’s matlab library)

cs(1) = NewCs('open_window', '', 'axialimage', 'keypress=" "');
cs(2) = NewCs('OPEN_PANEL', '', 'Define_Overlay');
cs(3) = NewCs('Set_Function', 'A', 'ARzs_CW_avvr.DEL');
cs(4) = NewCs('SET_DICOM_XYZ', '', '-6 86 -3');
cs(5) = NewCs('SET_SUBBRICKS', '', '-1 0 2');
cs(6) = NewCs('SET_THRESHNEW','', 1e-9, '*p');
err = TellAfni(cs);

Matlab

Sample command:
plugout_drive -com "SET_ANATOMY A ARZSspgrax.nii" \

-com "SET_FUNCTION A ARzs_CW_avvr.nii" \
-com "SET_ANATOMY B ${pref_brwp}" -quit

Shell Script

Hands-ON Mode

The hands-on mode requires applications to establish one or two way communications and to format and transmit commands to AFNI. There are two ways for achieving this:
 1- commands are simple ASCII strings but do not allow for practical transmission of large image datasets.

2- commands and data are transmitted using XML-formatted data elements [5]

 To make use of the faster and tighter communication control offered by the hands-on mode, programs must link with AFNI’s C-libraries.

3dSkullStrip -input anat.nii -visual &

Figure 2: Hands-on communication between AFNI/SUMA/3dSkullStrip.
With each iteration, 3dSkullStrip sends a new surface to SUMA, which displays it and sends it in
turn to AFNI. Surface and contours shown here are from an intermediate iteration.
In general, all communications can be bi-directional and different applications can communicate
with the same program.

3dSkullStrip

SUMA

AFNI

suma -niml &

afni -niml &

Figure 3: Hands-ON communication illustrated with real-time EPI time series viewing, volume
registration and correlation analysis (not illustrated).
The program Dimon monitors file directories where the scanner deposits newly reconstructed
images in DICOM format. Dimon sends each new volume to AFNI’s real-time interface for further
processing.
The program rtfeedme serves as a template for communicating new volumes to AFNI for the
purposes of real-time imaging.

AFNI

Dimon
MR Scanner, Image Files

Brain imaging analysis produces a great amount of image data. Navigating and examining data at
various analysis stages is important given the complexity of the analysis, numerous sources of artifacts,
and software differences.

We present new tools that automate AFNI and SUMA’s[1] data rendering capabilities. This allows users
and developers to drive AFNI’s extensive data navigation with relatively little, if any, overhead. These
tools, along with the adoption of NIfTI-1[2] format, further facilitate data processing across multiple
applications.

Other programs can drive AFNI / SUMA graphical interface using two modes:

• Scripted commands on command-line or in matlab (“Hands-OFF Mode”).

• C function calls (“Hands-ON Mode”) with the C API provided with AFNI’s source code.

Sample Applications Include:
• Automate repeated sequences of GUI interactions which quickly become tedious with large numbers
of data sets.
• Pinpoint origins of failure in complex iterative methods such as surface-based filtering, warping or
skull-stripping. Automated recording of scenes can be easily done for later video viewing.
• Detect subject motion or scanner-induced artifacts promptly with real-time imaging setups.

CSH Script loop to cycle over numerous data sets , setup new background, foreground, and turn video mode in axial view:

while ($cnt < 300)
plugout_drive  -com "SWITCH_UNDERLAY  A ${WithSkull[$cnt]}" 

-com "SWITCH_OVERLAY A ${WithNoSkull[$cnt]}" 
-com 'OPEN_WINDOW A coronalimage opacity=0.5'  

                        -com 'OPEN_WINDOW A axialimage keypress=v opacity=0.4' 
                        -quit
         echo "Enter new number or hit enter for next brain:"
         set ans = $< && set cnt = `expr $cnt + $ans`
 end

Set underlay to brain with skull dataset 
and overlay to the skull-stripped brain

Open Coronal and Axial images, 
set overlay opacity and start 
video mode in axial window

Figure 1: Time-series, anatomical, and functional data displays created using a series of Matlab[3] function calls [4].
Similar sequences could be generated from command line or from other programs via C-style system calls.


