Outlier Detection in FMRI Time Series

Robert W Cox, PhD

Scientific and Statistical Computing Core
National Institute of Mental Health, Bethesda MD USA

Goal: Find outliers (wild points) in FMRI time series data.

Synopsis: Compute range of "usual" values, then find values outside this range.

Step 1: Compute median $m(\mathbf{x})$ of each voxel time series $v(\mathbf{x},t)$.

⇒ This provides the middle of the "usual" range for each voxel **x**.

Step 2: Calculate clip level c such that $c = 0.5 \cdot \text{median}\{m(\mathbf{x}): m > c\}$.

 \Rightarrow From now on, ignore voxels with $m(\mathbf{x}) < c$ [as being too small and outside the brain].

<u>Step 3</u>: For each voxel time series, compute the

median-absolute- deviation:

 $MAD(\mathbf{x})=median_{f}\{|v(\mathbf{x},t)-m(\mathbf{x})|\}.$

Step 4: The "usual" range in each voxel \mathbf{x} is

[$m(\mathbf{x})$ -a·MAD(\mathbf{x}), $m(\mathbf{x})$ +a·MAD(\mathbf{x})] where a=Q⁻¹(0.01/N)· $\sqrt{(\pi/2)}$

Q()=reversed Gaussian cdf N=length of time series

Step 5: For each time *t*, the number of outlying

voxels n(t) is counted at all brain voxels **x**

(defined as in Step 2).

Step 6: The median n_{med} and MAD n_{MAD} of n(t)

are calculated.

 \Rightarrow Any t with $n(t) > n_{\text{med}} + 3.5 \cdot n_{\text{MAD}}$ is flagged as having an unusual number of outliers.

Example: Large counts at start are due to equilibration of M_{τ} .

- ⇒ Spikes past t = 20 were due to intermittent problems with the RF system.
- ⇒ This hardware problem was discovered due to the outlier detection process.

Extension: Look for outliers in $\partial v(\mathbf{x},t)/\partial t$ as well.

Software: Now incorporated into **AFNI** package:

http://afni.nimh.nih.gov/afni

We use the median and median-absolute-deviation (MAD) statistics instead of mean and standard-deviation to prevent contamination by a few outliers.

- If the noise is Gaussian, then MAD = $\sigma \cdot \sqrt{(2/\pi)}$.
- A standard N(0,1) Gaussian will exceed $Q^{-1}(p)$ with probability p.
- The threshold p = 0.01/N is chosen so that relatively few points will be counted as outliers if the noise is Gaussian.

