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Background

* Random H,O movement in the presence of magnetic field
gradients B,=B+x-G(¢) causes signal decay (due to dephasing)

+ Diffusion Tensor Imaging

* Models the distribution of random movements by non-isotropic
Gaussian probability density / point spread function (PSF)
« P(x,;D)=exp[-x-D" -x/41]/ [(471)** det D]
» Can analytically calculate signal decay E for any gradient history
A
[dq/di = yG(1)] from this model: In(E) =~ "q(t)- D-q(1)ds

* q denotes spatial frequency during diffusion encoding phase
of imaging, distinct from k during image encoding and readout

* A is the duration of the diffusion encoding phase

* DTI then estimates D by measuring £{q(?)} for a number of
different trajectories through ¢-space, and then fitting the 6
parameters in D to the set of £ values

* g-Space Imaging

» General PSF model for distribution of random movements of
magnetization [arbitrary P(x,A)]

» Drawback: Can only analytically calculate signal decay E for
impulsively large gradients [¢(7) = square wave]

* Need more data to reconstruct general P(x,A) for each voxel

» Asymptotically as q(7)— 0, ¢g-space imaging reproduces DTI [1]

» Goal: unify g-space and DTI formalisms further, to allow
systematic extensions of DTI-type processing to more general H,0
random transport models

Connections
+ Diffusion Tensor Imaging

» P(q,5;D)=exp[—t-q-D-q] so u,(q(t),;;D)=q(t)-D-q()

- s E{q) = exp[—‘[: a()-D- q(t)}dt

» This quadratic dependence on q(¢) is the standard result for DTI
* g-Space Imaging

. O<t<A
* PGSE with d<<A : q(t)={

0 otherwise

Y6G = const

e = u(q(t),1)=—-In P(y5G,1)

.o E= eij“ WG u(56.8) _ ﬁ(ySG,A)

* The standard PGSE g-space result: depends only on the final
PSF and not on the intermediate (t <A) P(x,t) functions

* Generically

» E{q(f)} is a tomographic integral through qgt-space of the PSF for
water transport, depending on P(x,f) at all times 0 <t<A

Mathematical Analysis

« M (x,t) = transverse magnetization

. M(q,t) = spatial Fourier transform = SHq[M(x,t)]
« P(x,t) = point spread function at time ¢

e M(x,t)= M (x,0)* P(x,t) = transport of magnetization in real space
. M(q,t) = M(q,O)- ls(q,t) = transport of magnetization in g-space
dM(q,t)  JP(q.1)/0r

« Differentiating: E Plan “M(q,1)
« Define: ﬁ(q,t) =exp[—-u(q,t)] so QPSq,t) or =— u(q.) =-u,(q,t)
P(q,1) ot

» Magnetization transport in the presence of gradients
(generalization of Bloch-Torrey-Stejskal equation for magnetization
transport with diffusion):

8M(x,t): _.dq

n XM +3 [—u,(q.M(q.)]

effect of spatial transport

phase change: effect of gradients

» Fourier transforming gives a linear first order (advection) PDE in
(q.7) space: o'?A;I(q,z)_@
ot dt
+ Solution by method of characteristics:
M(q,—q(1).1)= eij”l"(qm'”dr/l;[(ql,,()) where q, is arbitrary
* Imaging: rewind q(A) to q=0 before k-space readout, so
magnetization that will be imaged has been attenuated by

In(E) =~ [""u,(q(0).0)ds = jf{w}h

-V M(q.t)=—u,(q.)M (q.1)

0| P(q(0),1)

Future Potential

» Develop parametrized models for stochastic transport that are
more advanced than unrestricted diffusion; for example, [2] and [3]

« Estimate parameters in these models by acquiring various
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