
Unified Mathematical Model of q-Space & Diffusion Tensor Imaging
RW Cox, National Institute of Mental Health, Bethesda MD USA, Earth

Background
• Random H2O movement in the presence of magnetic field
gradients Bz=B0+x⋅G(t) causes signal decay (due to dephasing)

• Diffusion Tensor Imaging

• Models the distribution of random movements by non-isotropic
Gaussian probability density / point spread function (PSF)

•

• Can analytically calculate signal decay E for any gradient history
[                         ] from this model:

• q denotes spatial frequency during diffusion encoding phase
of imaging, distinct from k during image encoding and readout
• Δ is the duration of the diffusion encoding phase

• DTI then estimates D by measuring E{q(t)} for a number of
different trajectories through q-space, and then fitting the 6
parameters in D to the set of E values

• q-Space Imaging

• General PSF model for distribution of random movements of
magnetization [arbitrary P(x, Δ)]

• Drawback: Can only analytically calculate signal decay E for
impulsively large gradients [q(t) ≡ square wave]

• Need more data to reconstruct general P(x, Δ) for each voxel

• Asymptotically as q(t) → 0, q-space imaging reproduces DTI [1]
• Goal: unify q-space and DTI formalisms further, to allow
systematic extensions of DTI-type processing to more general H20
random transport models
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• Magnetization transport in the presence of gradients
(generalization of Bloch-Torrey-Stejskal equation for magnetization
transport with diffusion):

• Fourier transforming gives a linear first order (advection) PDE in
(q,t) space:

• Solution by method of characteristics:

• Imaging: rewind q(Δ) to q = 0 before k-space readout, so
magnetization that will be imaged has been attenuated by

M (x,t) = transverse magnetization

M̂ (q,t) = spatial Fourier transform = !x"q[M (x,t)]

P(x,t) = point spread function at time t

M (x,t) = M (x,0)!P(x,t) = transport of magnetization in real space

M̂ (q,t) = M̂ (q,0) ! P̂(q,t) = transport of magnetization in q-space
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phase change: effect of gradients
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effect of spatial transport
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Connections
• Diffusion Tensor Imaging

•

•

•  This quadratic dependence on q(t) is the standard result for DTI

•  q-Space Imaging

• PGSE with δ << Δ :

•

•

• The standard PGSE q-space result: depends only on the final
PSF and not on the intermediate (t < Δ) P(x,t) functions

• Generically
• E{q(t)} is a tomographic integral through qt-space of the PSF for
water transport, depending on P(x,t) at all times 0 < t < Δ
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Future Potential
• Develop parametrized models for stochastic transport that are
more advanced than unrestricted diffusion; for example, [2] and [3]
• Estimate parameters in these models by acquiring various
trajectories in qt-space

Possible trajectories
in qt-space, limited by

maximum gradient
strength

Highest
trajectory is
usual path
taken in
diffusion
weighted
imaging
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