False Sense of EPI-to-Structural Alignment with Common Cross-Modality Registration Methods

RW Cox¹, ZS Saad¹, DR Glen¹, G Chen¹, MS Beauchamp², R Desai³ ¹NIMH/Bethesda MD USA ²UT Health Science Center/Houston TX USA ³Medical College of Wisconsin/Milwaukee WI USA

The Problem

 Aligning EPI volumes to T₁-weighted volumes using Mutual Information (MI) or Correlation Ratio (CR) as the cost functional can produce registrations that *look good but are actually bad*

 Brain outlines from the two volumes might match well, but this can be very misleading:

• Interior structures (ventricles, fissures, sulci) that are visible in both types of images often are displaced 5 mm — or more

 This is not a software issue: AFNI (3dAllineate), SPM (COREG), and FSL (FLIRT) all often fail to give good anatomical matchings, upon close visual inspection

Sample Images:

- ${\bf T}_1\text{-weighted}$ volumes as the grayscale background, each one registered to the EPI volume with a distinct method

• EPI volume is edge-detected and only its edges are shown in the color overlay

• Two implementations of MI (AFNI/3dAllineate & SPM/COREG)

• Two implementations of CR (AFNI/3dAllineate & FSL/FLIRT)

Our new LPC cost functional (AFNI/align_epi_anat.py)

EPI interior edges track structural edges only with LPC

Local Pearson Correlation Cost Functional (LPC)

• Weighted correlation $r(\mathbf{x})$ calculated over neighborhood $N(\mathbf{x})$ of any point \mathbf{x} ; then $r(\mathbf{x})$'s are nonlinearly combined to give final cost:

$$\begin{split} W(\mathbf{x}) &= \sum_{\mathbf{y} \in \mathcal{N}(\mathbf{x})} w(\mathbf{y}) \quad \text{[local sum of weights]} \\ M(\mathbf{x}; F) &= \frac{1}{W(\mathbf{x})} \sum_{\mathbf{y} \in \mathcal{N}(\mathbf{x})} w(\mathbf{y}) \cdot F(\mathbf{y}) \quad \text{[local weighted mean of volume } F] \end{split}$$

 $Q(\mathbf{x}; F, G) = \sum_{\mathbf{y} \in N(\mathbf{x})} w(\mathbf{y}) \cdot [F(\mathbf{y}) - M(\mathbf{x}; F)] \cdot [G(\mathbf{y}) - M(\mathbf{x}; G)] \quad \text{[local scalar product of } F \& G]$

 $r(\mathbf{x}) = \frac{Q(\mathbf{x}; E, S)}{\left[Q(\mathbf{x}; E, E) \cdot Q(\mathbf{x}; S, S)\right]^{1/2}}$ [local weighted correlation coefficient]

 $C_{\text{LPC}}[E,S] = \sum_{\mathbf{x} \in P} W(\mathbf{x}) \cdot s(r(\mathbf{x})) \cdot \left| s(r(\mathbf{x})) \right| / \sum_{\mathbf{x} \in P} W(\mathbf{x}) \quad \text{[combined correlation coefficients]}$

• where: $E(\mathbf{x})$ =EPI; $S(\mathbf{x})$ =T₁; s(r)=tanh⁻¹(r); $N(\mathbf{x})$ =Kepler's rhombic dodecahdron centered at \mathbf{x} ; P=FCC space-filling lattice of rhombic dodecahdra covering the brain volume; and $W(\mathbf{x})$ =weight proportional to $E(\mathbf{x})$ to accentuate matching of CSF (bright in EPI, dark in T₁); the algorithm looks for the *most negative correlation* by minimizing $C_{LPC}[E(\mathbf{x}), S(\mathbf{T}(\mathbf{x}, \mathbf{\theta}))]$ over affine transformations $\mathbf{T}(\mathbf{\bullet})$

• CSF (usually) tracks ventricles, fissures, sulci fairly well in EPI; LPC produces a robust match between those central *and* cortical anatomical structures visible in both EPI and structural volumes

Computing correlations locally and then combining protects against shading artifacts and signal dropouts

Conclusions

 Accurate and truly "robust" alignment of structural and EPI volumes requires a modality-specific cost functional

 And requires visual inspection of results, especially if you are relying on the function-to-structure correspondence:

projection to cortical surface models; surgical planning

Assessment Methodology

 Three raters (blinded to method and presentation order) each scored each of 27 {EPI,T₁} volume pairs for alignment on a 4 point scale (from awful to excellent), for 8 different registration methods/tools:

• 1=awful 2=errors > 5 mm 3=errors 2..5 mm 4=errors 0..2 mm

Score :

Mean

2.8

26

24

- while viewing edge-enhanced images, in all three planes, overlaid in color and/or flickering between viewing *E* and *S*
- Sample datasets at 1.5 and 3.0 Tesla, from diverse sites
- Raters agreed remarkably well (Spearman correlations≈0.8)
- Contigency table statistics confirms the obvious: LPC wins

