Diffusion Tensor
Estimation Method

Robert Cox and Daniel Glen

Scientific and Statistical
Computing Core

NIMH

DT Ovenrview

MRI imaging method that shows relative rates and directions of diffusion
corresponding to flow principally along fiber tracts

Applications for diseases involving white matter including perinatal brain
injury, stroke, multiple sclerosis, tumors,

Acquisition of MRI volume followed by at least six or more volumes (typically
many more) with an additional gradient applied from non-collinear

directions
@ = Je b@D- D
Where

1@ = the image voxel intensity for each gradient g

J = the ideal image intensity without applied gradient
usually taken as J = 10

b(@® = “b-matrix” = y2G;G;6°(A-6/3) for the qth encoding gradient
Y = 267.5 rad/ms.mT,
A= time lag between starts of gradient,

0 = duration of gradient
D = the Diffusion tensor, Diffusion in 6 principal directions,

Dxx, Dxy, Dxz, Dyy, Dyz, Dzz
|n(|(0)/ |(q)) = b@ - D
D = In(I® / 1@) x bl

Eigenvalue calculations

DV =LAV
Where

D = diffusion tensor in a symmetric, sguare matrix form
(3%x3)

V = the eigenvector, a vector corresponding to an
orientation (3x1)

L = the eigenvalue, a scalar constant

For a 3x3 matrix, there are 3 sets of orthogonal eigenvector
and eigenvalue solutions

det(D — AI)=0
(D—-—AD)V =0
Solved with f2c converted eispack routine in AFNI using a

tridiagonal reduction followed by a QL2 solution for the
eigenvalues and vectors

General Measures

s Fractional Anisotropy (FA)
FA =V (A = A)7 + (A = R3)* + (A, — Ay)?

V2 VA2 4+ A2 + A2

s Lattice Index (LI) = 2 a Ll

a N

/2 a,

= Mean Diffusivity A =(k, + A, + 1;) /3

DWI, DT, Eigenvalue Samples

DXxXx

DTl images

| Anterior

SLarting

Color coded ~ Points RO

- L] |
Posterior

-3y
TR

Negative Eigenvalues

E
o
L
=
T
£
qQx
=2
L
i
=
™
o
@
=
B
b
=
[17]
m]
=
o

1g. 2. The probability of obtaining negative eigenvalues for the ‘rice’
shaped diffusion tensor as a function of A/A; at different noise levels
(1-5% of S,).

Skare, et. al, Mag. Res. Imaging, 18, 2000

Negative Eigenvalue Solutions

Negative values more likely with increasing FA and
with increasing noise (Skare, et al, Basser)

= Calculate FA with negative eigenvalues reset to O
(GE, Hopkins DTI Studio)

= Use another index, e.g. Lattice Anisotropy Index
(Basser)

s Spatial smoothing of DWI images (Hahn, et al)

= Temporal smoothing with repeat experiments
(Skare, et al)

= Calculate D, limiting D to positive definite matrix
(Tschumperlé and Deriche, Mangin et al)

Direct Least Squares for D

@ = Je bP D4 nojse

s Noise — Johnson noise, Eddy currents, motion including
periodic beat of CSF with blood flow, partial volume effect

> Find the symmetric non-negative definite matrix D that
minimizes the Error functional (cost function)

E(D, J) =% 2 w@ (J e D@ b_j@)°
g

Generally, estimate D, adjust through a gradient step to find
new estimate for D until D converges. Construct gradient
step to guarantee D is always positive definite (no negative
eigenvalues).

Initial’ Estimate of D, D,

s Estimate for D the traditional way
and find eigenvalues, vectors too

s Limit eigenvalues to positive ones by
setting A, A;eigenvalues to be at
least 0.2*A,

s Recompute D, = U A U!

Where U = [u,, U,, Uuz] matrix of
eigenvectors

A = diag(ny, Ay, A5)

Compute J (ldeal image voxel
value)

E(D, J) =% X w® (J e 2@ -0 @)°

OE/0] = 2 w® (J e P -D_ @) g H@.D

J= (2 w@ [@ g -b@.Dy

(Z w@ e _2p(a) . D)

Modified Gradient Descent

Gradient of E (error) with respect to D = F
F= 2 w©® Je —b(d) . D_|(@) (@

We want to change D to minimize E the fastest.
From definition of gradient,

oD/ot = -F (we don’t use this)

Where 1 Is pseudo-time Iin the descent.

But this doesn’t prevent D from becoming non-
positive definite, so instead ...

Modified Gradient Descent

oD/ ot = -(FD? + D?F)
This can be shown to be the fastest descent
while remaining positive definite
We will do the descent with finite steps

If 0D/ ot = -(ND + DN) with N as a constant
matrix, it can also be shown

D(’C - A’C) — e(-AtN) D(’C) a(-AtN)

Let N=FD and approximately constant over
At step

D(t + At) = e(-FbAY) D(7) e(-FDAY)

Modified Gradient Descent

We can replace e with the Pade
approximant (similar to a Taylor series expansion)
ex— (1 -x/2)/ (1 + x/2)
Similarly, for a matrix exponential,
eM— (-2 M) (I + 22 M)+
If we let
H,=1=+*%Y% At FD

Then
D(t + At) = H_(At) H,_(A7t)* D(r) H.(A7t)* H_(A1)

D(t + At) = A(At) D(x) A(AT)T
where A = H_ H, , which will always be symmetric and positive
definite

A7, pSeudo-time step size
calculation

Initial At conservatively estimated
At, = 0.01 2 |Dy] / 2 |G]
where G = FD? + D2F
Start with initial calculation of J, E(D,J)
(Cost function)

Take trial step of Az,
D(t + At) = A(A7) D(t) A(A1)T
Recalculate J and E(D, J)
If the new E(D, J) Is less than the previous
E(D,J), use this time step

Modified Gradient Descent Algorithm

Compute D traditional linear way
Compute eigenvalues and adjust
Compute D based on new eigenvalues
Calculate Ed = E(D,J) error

Compute Initial Az

Take trial steps until convergence

e Find acceptable trial step At that gives lower Ed by halving the
initial At up to 10 times

e Try step size of 2At, At, ¥2At. Compute corresponding Ed, D for
each and pick the Az, D that gives the lowest Ed. Use At as the
initial time step in the next convergence loop

e Test convergence (starting with second step)
- z IDnew_ Doldl / z IDneWI = 10_4

Optionally recompute convergence loop with new weight
factors

Weight Factor Computation

= [he initial weight factors were all set to 1

= Recompute weight factors to downweight data
points (gradients) that don’t fit well (outliers)

= Compute residual at each gradient level from
(0..n) as

r, =Je 2@ D@
Estimate Std. Dev. as
c = [1/Ng 2 ry?]
Wy = [1 / sqrt(1+ (ry /5)9)] * N, /
2 [1/ sqrt(1+ (r, /o)?)]

FA - non-linear

linear

E.ODE+0L

B.OMDE+D1

4 G0E+4

1 D0E+4+d

2.50E+04

A.E-+04

2 S0E+04

2. ME+D4

1.50E+04

1.0DE+04

anan,

rationewFAtcoldFA1004+0orig[0] 5

50,

B4

T8 B3 4o

100, 1164, 120 130 140 150 180 170 180,

2.40E+05

2.20E+05

2.00E+05

1.80E+05

1.60E+05

1.40E+05

1.20E+05

1.00E+05

8.00E+04

6.00E+04

4.00E+04

=.00E+04

0

Ratio of final E(D,J) to
E(D, J) at t=0
4

96 voxels

erDratlo + orig| 1 8] 57

Number steps to convergence

without reweighting
DTnoise7+orig[6] 496133 voxels

9.00E+04

8.00E+04

7.00E+04 - 1 =

6.00E+04 - =

5.00E+04 - =

4 00E+04 =

3.00E+04 - =

2.00E+04 - .

1.00E+04 =

Usage: 3dDWItoDT [options] gradient-file dataset

Computes 6 principle direction tensors from multiple
gradient vectors

and corresponding DTI image volumes.
The program takes two parameters as input :

a 1D file of the gradient vectors with lines of ASCI|I
floats Gxi,Gyi,Gzi.

Only the non-zero gradient vectors are included in
this file (no GO line).

a 3D bucket dataset with Np+1 sub-briks where
the first sub-brik is the

volume acquired with no diffusion weighting.
Options:
-automask = mask dataset so that the tensors are
computed only for

high-intensity (presumably brain) voxels. The
intensity level is

determined the same way that 3dClipLevel works.

-nonlinear = compute iterative solution to avoid
negative eigenvalues.

This is the default method.
-linear = compute simple linear solution

-reweight = recompute weight factors at end of
iterations and restart

-max_iter n = maximum number of iterations for
convergence (Default=10)

values can range from -1 to any positive integer
less than 101.

A value of -1 is equivalent to the linear solution.

A value of O results in only the initial estimate of
the diffusion tensor

solution adjusted to avoid negative eigenvalues.

-max_iter_rw n = max number of iterations after
reweighting (Default=5)

values can range from 1 to any positive integer less
than 101.

-eigs = compute eigenvalues, eigenvectors and
fractional anisotropy in
sub-briks 6-18. Computed as in 3dDTeig

-debug_briks = add sub-briks with Ed (error
functional), EdO (original error)
and number of steps to convergence

-cumulative_wts = show overall weight factors for
each gradient level
May be useful as a quality control

-verbose nnnnn = print convergence steps every
nnnnn voxels that survive to
convergence loops (can be quite lengthy)

-drive_afni = show convergence graphs every nnnnn
voxels that survive to convergence loops. AFNI must
have NIML communications on (afni -niml).

Example:
3dDWItoDTnoise -prefix rwO1 -automask -reweight -
max_iter 10 \
-max_iter_rw 10 tensor25.1D gradO02+orig.

The output is a 6 sub-brick bucket dataset containing
Dxx,Dxy,Dxz,Dyy,Dyz,Dzz. Additional sub-briks may be
appended with the -eigs and -debug_briks options.
These results are appropriate as the input to the
3dDTeig program.

—E4

=
=H fre e | L 1
"= 100, R v -
=]
= : & y
o 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1
L 140, £ = [8 40 a8

converge =tep

Other Methods Comparison

s [schumperlée and Deriche, Variational Framework
e Simultaneous spatial smoothing
e Complicated cost function versus x2
¥(In (19/1®) - g,7 D g,) + o ¢ (]VD])
where P(s) = log(1+s?) and ¢(s) = sgrt(1+s?)
We use Y (s) = s?, a = 0 (no spatial contribution)
e Slightly more complicated gradient function
s G = (F+F")D? + D? (F+F")
e Linearized with In(1©® / 1®) versus non-linear relationship,
1@ = Je 5P D4 nojse
e No reweighting
= Mangin, et al, Robust Tensor Estimation

e Cost function, Geman-McLure M-estimator, made to remove
outliers, g2 / (g2+C?) where C=1.48 median; |g]| (we use
reweighting)

e Similar to traditional method, does not enforce positive
definiteness on D

Future Directions

s Create and show fiber tracts in SUMA
and AENI

s [est model with computed DWI and
artificial noise

= Add other indices (Lattice Index,
Mean diffusivity,...)

= Refine model and algorithm
s Respond to AFNI user reguests

Acknowledgements

s Rick Reynolds
s Rich Hammett
s Zlad Saad

s Peter Basser

s Wolfgang Gaggl, Fernanda Tovar-
Moll

	Diffusion Tensor Estimation Method
	DTI Overview
	Eigenvalue calculations
	General Measures
	DWI, DT, Eigenvalue Samples
	DTI images
	Negative Eigenvalues
	Negative Eigenvalue Solutions
	Direct Least Squares for D
	Initial Estimate of D, D0
	Compute J (Ideal image voxel value)
	Modified Gradient Descent
	Modified Gradient Descent
	Modified Gradient Descent
	Dt, pseudo-time step size calculation
	Modified Gradient Descent Algorithm
	Weight Factor Computation
	Other Methods Comparison
	Future Directions
	Acknowledgements

