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DTI OverviewDTI Overview
MRI imaging method that shows relative rates and directions of dMRI imaging method that shows relative rates and directions of diffusion iffusion 

corresponding to flow principally along fiber tractscorresponding to flow principally along fiber tracts

Applications for diseases involving white matter including Applications for diseases involving white matter including perinatalperinatal brain brain 
injury, stroke, multiple sclerosis, tumors, ….injury, stroke, multiple sclerosis, tumors, ….

Acquisition of MRI volume followed by at least six or more volumAcquisition of MRI volume followed by at least six or more volumes (typically es (typically 
many more) with an additional gradient applied from nonmany more) with an additional gradient applied from non--collinear  collinear  
directionsdirections

II(q(q)) =  J e =  J e ––bb(q(q) D) .. D

Where Where 
II(q(q)) == the image the image voxelvoxel intensity for each gradient qintensity for each gradient q
J = the ideal image intensity without applied gradientJ = the ideal image intensity without applied gradient

usually taken as J = Iusually taken as J = I(0)(0)

bb(q(q)) = “b= “b--matrix” = matrix” = γγ22GGiiGGjjδδ22((∆∆--δδ/3) for the /3) for the qthqth encoding gradientencoding gradient
γγ = 267.5 = 267.5 rad/msrad/ms..mTmT, , 
∆∆= time lag between starts of gradient, = time lag between starts of gradient, 
δ δ = duration of gradient = duration of gradient 

D = the Diffusion tensor, Diffusion in 6 principal directioD = the Diffusion tensor, Diffusion in 6 principal directions,ns,
DxxDxx, , DxyDxy, , DxzDxz, , DyyDyy, , DyzDyz, , DzzDzz

ln(Iln(I(0) (0) / / II(q(q))) = ) = bb(q(q)) .. DD
D = ln(ID = ln(I(0)(0) / / II(q(q) ) ) x b) x b--11



EigenvalueEigenvalue calculationscalculations
D V = D V = λλ VV

Where Where 
D = diffusion tensor in a symmetric, square matrix form D = diffusion tensor in a symmetric, square matrix form 
(3x3)(3x3)
V = the eigenvector, a vector corresponding to an V = the eigenvector, a vector corresponding to an 
orientation (3x1)orientation (3x1)

λλ = the = the eigenvalueeigenvalue, a scalar constant, a scalar constant
For a 3x3 matrix, there are 3 sets of orthogonal eigenvector For a 3x3 matrix, there are 3 sets of orthogonal eigenvector 

and and eigenvalueeigenvalue solutionssolutions
det(Ddet(D –– λΙλΙ) = 0 ) = 0 
(D (D –– λΙλΙ) ) V V = 0= 0

Solved with f2c converted Solved with f2c converted eispackeispack routine in AFNI using a routine in AFNI using a 
tridiagonaltridiagonal reduction followed by a QL2 solution for the reduction followed by a QL2 solution for the 
eigenvalueseigenvalues and vectorsand vectors



General MeasuresGeneral Measures

Fractional Anisotropy (FA)Fractional Anisotropy (FA)
FA =FA =√ (λ√ (λ11 −− λλ22))22 + (λ+ (λ11 −− λλ33))22 + (λ+ (λ22 −− λλ33))22

Lattice Index (LI) = Lattice Index (LI) = ΣΣ aannLILInn / / ΣΣ aann

Mean Diffusivity Mean Diffusivity λ = (λλ = (λ11 + λ+ λ22 + λ+ λ33) / 3) / 3
~

√2 √λ√2 √λ11
22 + λ+ λ22

22 + λ+ λ33
22

LIn = 
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Negative Negative EigenvaluesEigenvalues

Skare, et. al, Mag. Res. Imaging, 18, 2000



Negative Negative EigenvalueEigenvalue SolutionsSolutions
Negative values more likely with increasing FA and Negative values more likely with increasing FA and 

with increasing noise (with increasing noise (SkareSkare, et al, , et al, BasserBasser))

Calculate FA with negative Calculate FA with negative eigenvalueseigenvalues reset to 0 reset to 0 
(GE, Hopkins DTI Studio)(GE, Hopkins DTI Studio)
Use another index, e.g. Lattice Anisotropy Index Use another index, e.g. Lattice Anisotropy Index 
((BasserBasser))
Spatial smoothing of DWI images (Hahn, et al)Spatial smoothing of DWI images (Hahn, et al)
Temporal smoothing with repeat experiments Temporal smoothing with repeat experiments 
((SkareSkare, et al), et al)
Calculate D, limiting D to positive definite matrix Calculate D, limiting D to positive definite matrix 
((TschumperléTschumperlé and and DericheDeriche, , ManginMangin et al)et al)



Direct Least Squares for DDirect Least Squares for D
II(q(q)) =  J e =  J e ––bb(q(q)) .. D D + noise+ noise

Noise Noise –– Johnson noise, Eddy currents, motion including Johnson noise, Eddy currents, motion including 
periodic beat of CSF with blood flow, partial volume effectperiodic beat of CSF with blood flow, partial volume effect
Find the symmetric nonFind the symmetric non--negative definite matrix D that negative definite matrix D that 
minimizes the Error functional (cost function)minimizes the Error functional (cost function)

E(D, J) = ½ E(D, J) = ½ ΣΣ ww(q(q)) (J e (J e ––bb(q(q)) .. D D -- II(q)(q)))
22

qq

Generally, estimate D, adjust through a gradient step to find Generally, estimate D, adjust through a gradient step to find 
new estimate for D until D converges. Construct gradient new estimate for D until D converges. Construct gradient 
step to guarantee D is always positive definite (no negative step to guarantee D is always positive definite (no negative 
eigenvalueseigenvalues).).



Initial Estimate of D,  DInitial Estimate of D,  D00

Estimate for D the traditional way Estimate for D the traditional way 
and find and find eigenvalueseigenvalues, vectors too, vectors too
Limit Limit eigenvalueseigenvalues to positive ones by to positive ones by 
setting setting λλ2, 2, λλ3 3 eigenvalueseigenvalues to be at to be at 
least 0.2*least 0.2*λλ11

RecomputeRecompute DD00 = U = U ΛΛ UUTT

Where U = [uWhere U = [u11, u, u22, u, u33] matrix of ] matrix of 
eigenvectorseigenvectors

ΛΛ = diag(= diag(λλ11, λ, λ22, λ, λ33))



Compute J (Ideal image Compute J (Ideal image voxelvoxel
value)value)

E(D, J) = ½ E(D, J) = ½ ΣΣ ww(q(q)) (J e (J e ––bb(q(q)) .. D D -- II(q)(q)))
22

∂∂E/E/∂∂J = J = ΣΣ ww(q(q)) (J e (J e ––bb(q(q)) .. D D -- II(q(q))) e ) e ––bb(q(q)) .. DD

J = (J = (ΣΣ ww(q(q)) II(q(q)) e e ––bb(q(q)) .. DD) / ) / 

((ΣΣ ww(q(q)) e e ––2b2b(q)(q) .. DD))



Modified Gradient DescentModified Gradient Descent
Gradient of E (error) with respect to D = FGradient of E (error) with respect to D = F

F F = = ΣΣ ww(q(q)) (J e (J e ––bb(q(q)) .. DD--II(q(q)))) bb(q(q))

We want to change D to minimize E the fastest. We want to change D to minimize E the fastest. 
From definition of gradient,From definition of gradient,

∂ ∂ D/D/∂ τ∂ τ = = --F   (we don’t use this)F   (we don’t use this)

Where Where ττ is pseudois pseudo--time in the descent. time in the descent. 
But this doesn’t prevent D from becoming nonBut this doesn’t prevent D from becoming non--

positive definite, so instead …positive definite, so instead …



Modified Gradient DescentModified Gradient Descent
∂∂D/ D/ ∂τ∂τ = = --(FD(FD22 + D+ D22F)F)

This can be shown to be the fastest descent This can be shown to be the fastest descent 
while remaining positive definitewhile remaining positive definite

We will do the descent with finite stepsWe will do the descent with finite steps
If If ∂∂D/ D/ ∂τ∂τ = = --(ND + DN) with N as a constant (ND + DN) with N as a constant 

matrix, it can also be shown matrix, it can also be shown 
D(D(ττ + + ∆τ∆τ) = ) = ee((--∆τ∆τNN)) D(D(ττ) ) ee((--∆τ∆τNN))

Let N=FD and approximately constant over Let N=FD and approximately constant over 
∆τ∆τ stepstep

D(D(ττ + + ∆τ∆τ) = ) = ee((--FDFD∆τ∆τ)) D(D(ττ) ) ee((--FDFD∆τ∆τ))



Modified Gradient DescentModified Gradient Descent
We can replace We can replace ee--xx with the with the PadéPadé
approximant (similar to a Taylor series expansion)approximant (similar to a Taylor series expansion)

ee--xx ~ (1 ~ (1 -- x/2) / (1 + x/2)x/2) / (1 + x/2)
Similarly, for a matrix exponential,Similarly, for a matrix exponential,

ee--M M ~ (I ~ (I –– ½ M) (I + ½ M)½ M) (I + ½ M)--11

If we let If we let 
HH±± = I ± ½ = I ± ½ ∆τ∆τ FD FD 

ThenThen
D(D(ττ + + ∆τ∆τ) = H) = H--((∆τ∆τ) H) H++((∆τ∆τ))--11 D(D(ττ) H) H++((∆τ∆τ))--11 HH--((∆τ∆τ) ) 

D(D(ττ + + ∆τ∆τ) = ) = A(A(∆τ∆τ) ) D(D(ττ) ) A(A(∆τ∆τ))TT

where A = Hwhere A = H-- HH+ + , which will always be symmetric and positive , which will always be symmetric and positive 
definitedefinite



∆τ∆τ, pseudo, pseudo--time step size time step size 
calculationcalculation

Initial Initial ∆τ∆τ conservatively estimatedconservatively estimated

∆τ∆τ00 = 0.01 = 0.01 ΣΣ |D|D00|  /  |  /  ΣΣ |G||G|
where G = FDwhere G = FD22 + D+ D22FF
Start with initial calculation of J, E(D,J) Start with initial calculation of J, E(D,J) 

(Cost function)(Cost function)
Take trial step of Take trial step of ∆τ∆τ00

D(D(ττ + + ∆τ∆τ) = ) = A(A(∆τ∆τ) ) D(D(ττ) ) A(A(∆τ∆τ))TT

Recalculate J and E(D, J)Recalculate J and E(D, J)
If the new E(D, J) is less than the previous If the new E(D, J) is less than the previous 

E(D,J), use this time stepE(D,J), use this time step



Modified Gradient Descent AlgorithmModified Gradient Descent Algorithm

Compute D traditional linear wayCompute D traditional linear way
Compute Compute eigenvalueseigenvalues and adjustand adjust
Compute D based on new Compute D based on new eigenvalueseigenvalues
Calculate Ed = E(D,J) errorCalculate Ed = E(D,J) error
Compute Initial Compute Initial ∆τ∆τ
Take trial steps until convergence Take trial steps until convergence 
•• Find acceptable trial step Find acceptable trial step ∆τ∆τ that gives lower Ed by halving the that gives lower Ed by halving the 

initial initial ∆τ∆τ up to 10 timesup to 10 times
•• Try step size of 2Try step size of 2∆τ, ∆τ, ∆τ∆τ, ½, ½∆τ∆τ. Compute corresponding Ed, D for . Compute corresponding Ed, D for 

each and pick the each and pick the ∆τ∆τ, D that gives the lowest Ed. Use , D that gives the lowest Ed. Use ∆τ∆τ as the as the 
initial time step in the next convergence loopinitial time step in the next convergence loop

•• Test convergence (starting with second step)Test convergence (starting with second step)

Σ Σ ||DDnewnew –– DDoldold|  /  |  /  Σ Σ ||DDnewnew| < 10| < 10--44

Optionally Optionally recomputerecompute convergence loop with new weight convergence loop with new weight 
factorsfactors



Weight Factor ComputationWeight Factor Computation
The initial weight factors were all set to 1The initial weight factors were all set to 1
RecomputeRecompute weight factors to weight factors to downweightdownweight data data 
points (gradients) that don’t fit well (outliers)points (gradients) that don’t fit well (outliers)
Compute residual at each gradient level from Compute residual at each gradient level from 
(0..n) as(0..n) as

rrqq = J e = J e ––bb(q(q)) .. DD--II(q(q) ) 

Estimate Std. Dev. as Estimate Std. Dev. as 

σσ = [1/N= [1/Nqq ΣΣ rrqq
22] ] ½½

wwqq = [1 / = [1 / sqrtsqrt( 1+ (( 1+ (rrqq //σσ))22)] * )] * NNqq / / 

ΣΣ [1 / [1 / sqrtsqrt( 1+ (( 1+ (rrqq //σσ))22)])]



FA - non-linear

FA - linear



Ratio of final E(D,J) to 
E(D,J) at τ=0 



Number steps to convergence 
without reweighting



Usage: 3dDWItoDT [options] gradientUsage: 3dDWItoDT [options] gradient--file datasetfile dataset
Computes 6 principle direction tensors from multiple Computes 6 principle direction tensors from multiple 

gradient vectorsgradient vectors
and corresponding DTI image volumes.and corresponding DTI image volumes.
The program takes two parameters as input :  The program takes two parameters as input :  

a 1D file of the gradient vectors with lines of ASCII a 1D file of the gradient vectors with lines of ASCII 
floats floats Gxi,Gyi,GziGxi,Gyi,Gzi..

Only the nonOnly the non--zero gradient vectors are included in zero gradient vectors are included in 
this file (no G0 line).this file (no G0 line).

a 3D bucket dataset with Np+1 suba 3D bucket dataset with Np+1 sub--briksbriks where where 
the first subthe first sub--brikbrik is theis the

volume acquired with no diffusion weighting.volume acquired with no diffusion weighting.
Options:Options:

--automaskautomask =  mask dataset so that the tensors are =  mask dataset so that the tensors are 
computed only forcomputed only for

highhigh--intensity (presumably brain) intensity (presumably brain) voxelsvoxels.  The .  The 
intensity level isintensity level is

determined the same way that 3dClipLevel works.determined the same way that 3dClipLevel works.

--nonlinear = compute iterative solution to avoid nonlinear = compute iterative solution to avoid 
negative negative eigenvalueseigenvalues..

This is the default method.This is the default method.

--linear = compute simple linear solutionlinear = compute simple linear solution

--reweightreweight = = recomputerecompute weight factors at end of weight factors at end of 
iterations and restartiterations and restart

--max_itermax_iter n = maximum number of iterations for n = maximum number of iterations for 
convergence (Default=10)convergence (Default=10)

values can range from values can range from --1 to any positive integer 1 to any positive integer 
less than 101.less than 101.

A value of A value of --1 is equivalent to the linear solution.1 is equivalent to the linear solution.
A value of 0 results in only the initial estimate of A value of 0 results in only the initial estimate of 

the diffusion tensorthe diffusion tensor
solution adjusted to avoid negative solution adjusted to avoid negative eigenvalueseigenvalues.

--max_iter_rwmax_iter_rw n = max number of iterations after n = max number of iterations after 
reweightingreweighting (Default=5)(Default=5)

values can range from 1 to any positive integer less values can range from 1 to any positive integer less 
than 101.than 101.

--eigseigs = compute = compute eigenvalueseigenvalues, eigenvectors and , eigenvectors and 
fractional anisotropy in fractional anisotropy in 

subsub--briksbriks 66--18. Computed as in 3dDTeig18. Computed as in 3dDTeig

--debug_briksdebug_briks = add sub= add sub--briksbriks with Ed (error with Ed (error 
functional), Ed0 (original error)functional), Ed0 (original error)

and number of steps to convergenceand number of steps to convergence

--cumulative_wtscumulative_wts = show overall weight factors for = show overall weight factors for 
each gradient leveleach gradient level

May be useful as a quality controlMay be useful as a quality control

--verbose verbose nnnnnnnnnn = print convergence steps every = print convergence steps every 
nnnnnnnnnn voxelsvoxels that survive tothat survive to

convergence loops (can be quite lengthy)convergence loops (can be quite lengthy)

--drive_afnidrive_afni = show convergence graphs every = show convergence graphs every nnnnnnnnnn
voxelsvoxels that survive to convergence loops. AFNI must that survive to convergence loops. AFNI must 
have NIML communications on (have NIML communications on (afniafni --nimlniml).).

Example:Example:
3dDWItoDTnoise 3dDWItoDTnoise --prefix rw01 prefix rw01 --automaskautomask --reweightreweight --

max_itermax_iter 10 10 \\
--max_iter_rwmax_iter_rw 10 tensor25.1D grad02+orig.10 tensor25.1D grad02+orig.

The output is a 6 subThe output is a 6 sub--brick bucket dataset containing brick bucket dataset containing 
Dxx,Dxy,Dxz,Dyy,Dyz,DzzDxx,Dxy,Dxz,Dyy,Dyz,Dzz. Additional sub. Additional sub--briksbriks may bemay be
appended with the appended with the --eigseigs and and --debug_briksdebug_briks options.options.
These results are appropriate as the input to the These results are appropriate as the input to the 
3dDTeig program.

.

3dDTeig program.





Other Methods ComparisonOther Methods Comparison
TschumperléTschumperlé and and DericheDeriche, , VariationalVariational FrameworkFramework
•• Simultaneous spatial smoothingSimultaneous spatial smoothing
•• Complicated cost function versus xComplicated cost function versus x22

ΨΨ(ln(ln (I(I(0)(0)/I/I(q)(q)) ) -- ggkk
TT D D ggkk) + ) + αα φφ (|(|∇∇D|)D|)

where where ΨΨ(s(s) = log(1+s) = log(1+s22) and ) and φφ(s(s) = sqrt(1+s) = sqrt(1+s22))
We use We use ΨΨ(s(s) = s) = s22, , α α = 0 (no spatial contribution)= 0 (no spatial contribution)

•• Slightly more complicated gradient functionSlightly more complicated gradient function
G = (F+FG = (F+FTT)D)D22 + D+ D22 (F+F(F+FTT))

•• LinearizedLinearized with ln(Iwith ln(I(0) (0) / / II(q(q))) versus non) versus non--linear relationship,linear relationship,
II(q(q)) =  J e =  J e ––bb(q(q)) .. D D + noise+ noise

•• No No reweightingreweighting
ManginMangin, et al, Robust Tensor Estimation, et al, Robust Tensor Estimation
•• Cost function, Cost function, GemanGeman--McLureMcLure MM--estimator, made to remove estimator, made to remove 

outliers, outliers, εεii
22 / (/ (εεii

22+C+C22) where C=1.48 ) where C=1.48 medianmedianii ||εεii| (we use | (we use 
reweightingreweighting))

•• Similar to traditional method, does not enforce positive Similar to traditional method, does not enforce positive 
definiteness on Ddefiniteness on D



Future DirectionsFuture Directions

Create and show fiber tracts in SUMA Create and show fiber tracts in SUMA 
and AFNIand AFNI
Test model with computed DWI and Test model with computed DWI and 
artificial noiseartificial noise
Add other indices (Lattice Index, Add other indices (Lattice Index, 
Mean diffusivity,…)Mean diffusivity,…)
Refine model and algorithmRefine model and algorithm
Respond to AFNI user requestsRespond to AFNI user requests
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