Skip to content

AFNI and NIfTI Server for NIMH/NIH/PHS/DHHS/USA/Earth

Sections
Personal tools
You are here: Home » SSCC » rwcox's Home » Cox's Brain Blog » Image registration for DTI

Image registration for DTI Image registration for DTI

Document Actions
Submitted by bpittman. on 2005-12-21 09:43.
Registering DWI images for DTI calculations has the problem that the different gradient weightings produce markedly different images. The result is that the Gx-direction image looks quite a lot different from the Gy-weighted image (say). This poses problems for standard registration methods.

The problem is that image registration is ultimately based on comparing the two (or more) images as the software wiggles them around, and stopping when the comparison is good. The comparison might be least squares (e.g., correlation), mutual information, or whatnot. But if the images aren't that comparable in detail, then the registration might be off, and it is hard to judge how much.

For images going into the DWI-to-DTI calculation, one solution is the DWI-to-DTI calcuation itself. That is, the goal after registration is then to compute the DT from the DW data at each voxel, and this computation is itself a fitting of the DT to the DW values. At the end, in each voxel we have residual = what's left after we subtract the DT fit from the DW data. A precise registration method would be to wiggle the DW images around until the overall residuals from the DT fit are small. Schematically:
  (1) Do some preliminary standard registration method, just to get things off to a good start;
  (2) Compute the DWI-to-DTI fit at each voxel;
  (3) Compute the residual variance (or MAD) at each voxel, then average these (or median) over the brain as a measure of the overall goodness-of-fit;
  (4) Wiggle the DW images arounds and go back to step (2), with the goal of minimizing the overall residual value computed in (3).

There are many details to be worked out, such as the method used in step (4) to decide upon the image movement parameters.

The principle is to directly attack the problem: misregistration produces bad DTI fits, so use try to minimize this badness.

This is probably a Ph.D. level problem, taking a couple years to get working well, I'd guess, for a decent student.


image registration for DTI

Posted by dglen at 2006-02-13 16:24
The 3dDWItoDT program already includes a kind of quality control rating for each gradient in the weight factor report if the cumulative_wts option is used. Combinining this with the functionality of 3drotate might do the trick.
Blog
« September 2021 »
Su Mo Tu We Th Fr Sa
      1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30    
 
 

Powered by Plone

This site conforms to the following standards: