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A quick and accurate way to rotate and shift nuclear magnetic
resonance (NMR) images using the two-dimensional chirp- z
transform is presented. When the desired image grid is rotated
and shifted from the original grid due to patient motion, the
chirp- z transform can reconstruct NMR images directly onto the
ultimate grid instead of reconstructing onto the original grid and
then applying interpolation to get the final real-space image in
the conventional way. The rotation angle and shift distances are
embedded in the parameters of the chirp- z transform. The
chirp- z transform implements discrete sinc interpolation to get
values at grid points that are not exactly on the original grid
when applying the inverse Fourier transform. Therefore, the
chirp- z transform is more accurate than methods such as linear
or bicubic interpolation and is more efficient than direct imple-
mentation of sinc interpolation because the sinc interpolation is
implemented at the same time as reconstruction from k-space.
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It is often desirable to rotate and shift nuclear magnetic
resonance (NMR) images from the original grid due to
patient motion. The interpolation necessary to carry out
the rotation and shift can cause the images to be smeared. It
is necessary to find a way to reconstruct the image onto the
desired grid quickly and with minimal loss of image
quality. In the usual method, the images are first recon-
structed from k-space onto the original grid using the
inverse discrete Fourier transform, and then the recon-
structed images are interpolated onto the rotated and
shifted grid to get the final image. Among all the interpola-
tion methods, since interpolation gives the best result for
band-limited data (1). However, sinc interpolation in image-
space is difficult to implement efficiently, which restricts
its use in MRI. By reconstructing and doing since interpola-
tion together, the two-dimensional (2D) chirp-z transform
presented here can rotate images more efficiently and accu-
rately than the usual interpolation methods. In a sense, the
method presented here is a generalization of the well-known
Fourier shift theorem, which allows the computation of
shifted images by modifying the phase of the data (2).

THEORY

The 1D chirp-z transform is defined on the N-long complex
sequence 5 fj, j 5 0, 1, . . . , N 2 16 as

f̃k(a) 5 o
j50

N21

fj e22pi·jka, [1]

where a can be any complex number (3,4). The chirp-z
transform is a generalization of the discrete Fourier trans-
form (DFT), which is defined as

f̂k 5 o
j50

N21

fj e22pi·jk/N .

The DFT is a special case of the chirp-z transform with the
parameter a fixed at 1/N.

The difference between the DFT and the chirp-z trans-
form will be clear if their image-space grids are shown (Fig.
1). The chirp-z transform has arbitrary spacing in its
image-space grid, given as a, while the spacing in the DFT
is fixed as 1/N. The DFT cannot adjust its grid spacing to fit
a different output spacing while the chirp-z transform can
stretch or shrink the output grid spacing.

This advantage of the chirp-z transform over the DFT
can be extended to 2D transforms, which means that by
using the 2D chirp-z transform the relationship between
the k-space MRI data grid and the reconstructed image-
space grid can be arbitrary. Not only can the grid spacing
be stretched or shrunk, but also the orientation of the
whole grid can be changed. Define the 2D chirp-z trans-
form on the 2D complex sequence 5 flm: l, m 5 0, 1, . . . ,
N 2 16:

f̃pq(a, b)5 o
l50

N21

o
m50

N21

flme22pia·(lp1mq)e22pib·(mp2lq), [2]

where a and b are arbitrary complex numbers. The 2D DFT
is defined on the same 2D complex sequence as

f̂pq 5 o
l50

N21

o
m50

N21

flme22pi(lp1mq)/N.

Compared with the 2D chirp-z transform, the 2D DFT is
the special case of the 2D chirp-z transform with a 5 1/N,
b 5 0. Note the third factor of the summation element in
Eq. [2]. The grid indices of image-space (p, q) and k-space
(l, m) are cross multiplied. In a later section we will show
how a and b are related to the rotation angle and grid
spacing.

ALGORITHM

If the 2D chirp-z transform is implemented strictly accord-
ing to Eq. [2], it will be much slower than the fast Fourier
transform (FFT) implementation of the DFT (5). Rabiner et
al introduced a 1D fast chirp-z transform algorithm (3).
This algorithm can be derived by rewriting 2jk 5 j2 1 k2 2
(k 2 j )2 in Eq. [1] (4). The expression for the 1D chirp-z
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transform becomes

f̃k(a) 5 o
j50

N21

fj e2pi[j2
1k2

2(k2j)2]a

5 e2pik2
a o

j50

N21

fj · e2pij2a · epi(k2j )2a. [3]

The summation in Eq. [3] is the convolution of the se-
quence 5 fje2pij 2a

6 with 5epij 2a
6. Since the Fourier transform of

the convolution of two sequences is equal to the product of
the Fourier transform of the sequences, the 1D chirp-z
transform can be implemented by the use of the 1D FFT
algorithm. We first FFT the sequences 5fje2pij 2a

6 and 5epij 2a
6,

multiply the results, and apply the inverse FFT to this
product. The final step is to multiply this inverse FFT
result by the factor e2pik2a.

In the 2D case, which is done here for the first time to the
best of our knowledge, factor the exponents in Eq. [2] like
this:

2(lp 1 mq) 5 (l 1 p)2 2 (m 2 q)2 1 (m2 2 l 2) 1 (q2 2 p2)

and

(mp 2 lq) 5 (l 1 p)(m2 q) 2 (lm) 1 (pq),

then

f̃pq(a,b) 5 o
l50

N21

o
m50

N21

flm · e2pia(m2
2l2) · e2pia(q2

2p2)

· e2pia[(l1p)22(m2q)2] · e2pib(lm) · e22pib(pq) · e22pib(l1p)(m2q).

Define

Ylm 5 flm · e2pia·(m2
2l2)12pib·(lm)

Zlm 5 e2pia·(l 2
2m2)22pib·(lm),

then

f̃pq(a, b) 5 (Zqp) · o
l50

N21

o
m50

N21

Ylm · Zl1p,m2q. [4]

The summation in Eq. [4] is a 2D discrete convolution that
can be evaluated with 2D FFTs. This evaluation shows that
the 2D chirp-z transform can be implemented relatively
efficiently. We note that the coefficients Zlm can be gener-
ated recursively using the identities

Zl11,m 5 Z*l21,m · Zlm
2 · e22pia,

Zl,m11 5 Z*l,m21 · Zlm
2 · e2pia.

This technique avoids computation of many trigonometric
functions. In addition, if only a magnitude image is re-
quired, the final multiplication by Zqp may be omitted.

RECONSTRUCTION

The NMR signal S(kx, ky) is gathered in k-space (6), which
is

S(kx, ky) ~ eeM'(x, y)e22pi(kxx1kyy)dx dy (1 noise).

Normal reconstruction applies the inverse Fourier trans-
form to give the image as

I(x, y) 5 eeS(kx, ky)e2pi(kxx1kyy)dkxdky . [5]

Since the data are discrete, we actually have

Slm 5 S(lDk, mDk) 0 l 0, 0m 0 #
1

2
N.

The image reconstruction of Eq. [5] is approximated by a
sum

I(pDx, qDx) < Ipq 5 o
l,m

Slme2pi(lDkpDx1mDkqDx)

5 o
l,m

Slme2pi(lp1mq)DkDx.

If DkDx 5 22M, a power-of-2 FFT can be used for fast
reconstruction. As shown in Fig. 1, once the k-space grid is
chosen (by programming the image acquisition param-
eters), the image-space grid is chosen too. However, we
would like to break this yoke so that the data can be
reconstructed (semi-efficiently) onto an arbitrary rotated
grid. We approximate the integral in Eq. [5] by a sum, but
evaluated on a rotated grid.

Ipq 5 I(p cos u Dx 2 q sin u Dx, p sin u Dx 1 q cos u Dx)

5 o
lm

Slme2pilDk·(pcosuDx2qsinuDx)e2pimDk·(psinuDz1qcosuDx)

5 o
lm

Slm e2pi(lp1mq)·cosuDkDxe2pi(2lq1mp)·sinuDkDx. [6]

Eq. [6] requires a way to compute SlmSlme2pia·(lp1mq)

e2pib·(2lq1mp) efficiently for arbitrary a and b, not just a 5
1/N and b 5 0. Eq. [2] shows that the chirp-z transform is
the ideal tool for this task.

FIG. 1. a: The image-space grid for the DFT. b: The image-space
grid for the chirp-z transform.
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In the rest of this paper the data in k-space are repre-
sented by flm, while f̃lm stands for the reconstruction on the
image-space grid; (l, m) is the input index in k-space with
the coordinates of the corresponding point given as (lDkx,
mDky); (p, q) is the output index in the image-space with
the coordinates of the corresponding point given as (xpq,
ypq). If the image-space grid is rotated with angle u and
shifted with the origin point being moved from (0, 0) to (x0,
y0) (shown in Fig. 2), the value of xpq and ypq is

xpq 5 x0 1 (Dx cos u )p 2 (Dx sin u )q, p 5 0, 1,..., N 2 1.

ypq 5 y0 1 (Dx sin u )p 1 (Dx cos u )q, q 5 0, 1,..., N 2 1.

where Dx is the spacing in the image-space grid. The
image-space reconstruction f̃ (x, y) at position (x, y) is given

by

f̃ (x, y) 5 o
l52(N/2)

(N/2)21

o
m52(N/2)

(N/2)21

flme2pilx/N12pimy/N.

The inverse DFT cannot be applied directly to get f̃ (x, y).
Instead, the value at every grid point (xpq, ypq) can be
calculated as:

f̃pq 5 f̃ (xpq, ypq)

5 o
l50

N21

o
m50

N21

fl2(N/2),m2(N/2) · e2pi·[l2(N/2)](x01Dxcosu·p2Dxsinu·q)/N

· e2pi·[m2(N/2)](y01Dxsinu·p1Dxcosu·q)/N

5 o
l50

N21

o
m50

N21

fl2(N/2),m2(N/2) · e2pi[l2(N/2)]x0/N12pi[m2(N/2)]y0/N

· e2piDx[(cosu1sinu) p1(cosu2sinu)q]

· e2pi(lp1mq)·Dxcosu/N · e2pi(mp2lq)·Dxsinu/N

5 e2piDx[(cosu1sinu) p1(cosu2sinu)q) · H̃pq 12Dx cos u

N
,2

Dx sin u

N 2 ,

where H̃pq is the chirp-z transform of the sequence Hlm at
indices p, q and

Hlm 5 fl2(N/2),m2(N/2) e2pi[(l2(N/2))x01(m2(N/2))y0]/N.

With the chirp-z transform, the image can be efficiently
reconstructed directly onto the rotated and shifted grid.
From Eq. [4], H̃pq can be computed with two 2D FFTs of size
2L (L $ N) with the initialization of Zlm. The arithmetic
complexity of the chirp-z transform is O (80N2log2N) (usu-
ally L 5 N). A direct image-space image-space implementa-

FIG. 3. a: The original brain image. b: The image after rotation of 360° consecutively (72 steps of 5°) using the chirp-z transform. c: The image
after rotation of 360° consecutively (72 steps of 5°) using bicubic interpolation.

FIG. 2. The image-space grid is rotated with angle u and shifted with
the original point shifted from (0, 0) to (x0, y0).
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tion of bicubic interpolation with four neighboring points
in each direction requires approximately O (75N2) opera-
tions.

RESULTS AND DISCUSSION

We applied the chirp-z transform to rotate complex-valued
MR images (matrix 256 3 256). As an example, the chirp-z
transform can rotate images efficiently with little blurring
even after rotating 3607 consecutively (72 steps of 57)
compared with bicubic interpolation (shown in Fig. 3). The
fidelity of the chirp-z transform rotated images is much
higher than the image rotated using bicubic interpolation.
Interpolation in k-space can help solve the problem of
rotating MR images, but these methods have limitations
(7–9). Unser et al and Eddy et al described improved
methods to rotate images by using a shearing transforma-
tion and Fourier interpolation (10,11). The method pre-
sented here is a direct way to rotate MR images at the same
time as reconstructing the data from k-space, avoiding any
explicit interpolation. Instead of two steps, reconstruction
followed by interpolation, the chirp-z transform does the
Fourier transform and simultaneously implements discrete
sinc interpolation to interpolate the values for the points
that are not exactly on the original image-space grid. The
chirp-z transform is the ideal method to rotate NMR images
quickly and efficiently, since it is the computational realiza-

tion of Eq. [5]. Combined with an algorithm for determin-
ing the rotation angle and shift, we expect this to become a
very useful and efficient tool in MRI.
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