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Event-related functional magnetic resonance imaging (ER-
fMRI) involves the mapping of averaged hemodynamic changes
resulting from repeated, brief (<3 sec) brain activation epi-
sodes. In this paper, two issues regarding constant-interstimu-
lus interval ER-fMRI were addressed. First, the optimal inter-
stimulus interval (ISI), given a stimulus duration (SD), was de-
termined. Second, the statistical power of ER-fMRI relative to
that of a blocked-design paradigm was determined. Experimen-
tally, it was found that with a 2-sec SD, the optimal ISI is 12 to
14 sec. Theoretically, the optimal repetition interval (Topt 5 ISI 1
SD) is 12 to 14 sec for stimuli of 2 sec or less. For longer stimuli,
Topt is 8 1 2 z SD. At the optimal ISI for SD 5 2 sec, the
experimentally determined functional contrast of ER-fMRI was
only 235% lower than that of blocked-design fMRI. Simulations
that assumed a linear system demonstrated an event-related
functional contrast that was 265% lower than that of the
blocked design. These differences between simulated and ex-
perimental contrast suggest that the ER-fMRI amplitude is
greater than that predicted by a linear shift-invariant system.
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Brain activation causes highly localized and time-locked
changes in blood flow, volume, and oxygenation. These
changes are detectable using functional magnetic reso-
nance imaging (fMRI) (1–5). The most commonly used
fMRI pulse sequences are those that are sensitized to lo-
calized susceptibility changes that accompany changes in
blood oxygenation. This type of contrast was coined blood
oxygenation level dependent (BOLD) contrast by Ogawa et
al. (6). On activation, the time for the BOLD response to
first significantly increase from baseline is approximately
2 sec (7,8). The time to plateau in the “on” state is approx-
imately 6 to 9 sec (7). On cessation of activation, the time
to return to baseline is longer than the rise time by about
1 sec (9).

Deconvolution of a neuronal input function from the
measured hemodynamic response gives a hemodynamic
“impulse response” that roughly resembles the type of
response that is induced by a brief stimulus (10). To draw
precise inferences from this analysis, it is necessary to
assume that the hemodynamic response behaves like a
linear system. Issues related to the linearity of the hemo-
dynamic response have been addressed (11–15). Boynton
et al. (12) and Vazquez and Noll (15) have presented re-
sults suggesting a nonlinearity of the hemodynamic re-

sponse during brief (,4 sec) stimulus durations. Dale and
Buckner (14) give evidence that the responses from brief
stimuli presented in rapid succession add in an approxi-
mately linear manner. These issues are discussed in the
context of the results presented. (In this paper, “linearity”
refers to the assumption that the transformation between
the stimulus time series and a voxel response time series—
two observables—is a linear one.)

Event-related experiments involving brief periods of
sensory and motor activation demonstrated that the hemo-
dynamic response peaks at about 5 to 6 sec, then returns to
baseline at about 10 sec (9,14,16–20). The onset is some-
times preceded by a “pre-undershoot,” (21–23). The return
to baseline is sometimes followed by a “post-undershoot”
(5,24–27). The post-undershoot is larger in magnitude and
more commonly observed than the pre-undershoot. Basic
concepts regarding event-related hemodynamic response
characteristics and analysis have been published
(12–15,28,29). Recently, “event-related” activation strate-
gies have become more extensively characterized and ap-
plied in the context of cognitive experiments (20,30–34).

There are many advantages of event-related activation
strategies (34), including more complete randomization of
task types in a time series (14,31,32), selective analyses of
fMRI response data based on measured behavioral re-
sponses to individual trials (33), and separation of motion
artifact due to overt responses from BOLD changes by use
of temporal response differences between motion effects
and BOLD contrast-based changes (35,36).

A time series of multiple, sequential single-event brain
activation tasks or stimuli can be thought to involve two
primary variables: the stimulus duration (SD) and the in-
terstimulus interval (ISI). Event-related studies reported in
the literature have employed SDs that vary from 0.33 sec to
2 sec, and ISIs that vary from 30 sec to 2 sec.

Event-related experimental design strategies can be di-
vided into two categories The first involves randomization
of the ISI during a time series and subsequent deconvolu-
tion of the “impulse response.” Analysis of this impulse
response uses the assumption that the hemodynamic re-
sponse is linear system. Processing issues related to this
assumption are outside the scope of this paper. The second
strategy involves the use of a constant ISI. While constant
ISI strategies may be less time efficient than randomized
ISI strategies, analysis of constant ISI ER-fMRI is straight-
forward, involving simple binning and averaging. No de-
convolution is necessary and therefore no assumptions of
linearity are necessary. A primary focus of this paper is the
optimization of constant ISI strategies.

Two questions arise when considering the design of an
ER-fMRI experiment using a constant ISI. The first is,
“What is the optimum ISI for a given SD?” For many
cognitive experiments, the SD is roughly 1 to 2 sec—the
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average time necessary to fully perform the individual
task. More trials per unit time tend to increase the statis-
tical power, but the slowness of the hemodynamic re-
sponse causes significant signal overlap if the trials are
spaced too closely in time. This overlap can cause satura-
tion of the fMRI signal (usually indicated by an increase in
the baseline level) and subsequently attenuation of the
amplitude or reduction of the available dynamic range of
the event-related responses (“clipping” of the fMRI re-
sponses). The attenuation in amplitude change decreases
the ability to detect the fMRI response and the statistical
power of its amplitude estimate. The tradeoff is therefore
between the number of trials per unit time and the degree
of attenuation of the event-related response that occurs
with close temporal spacing. This tradeoff depends on the
shape and latency of the impulse response. The second
question regards how the statistical power of ER-fMRI
compares with fMRI using more conventional blocked de-
signs (i.e., repeated cycles of '20 sec “on” and '20 sec
“off”). This is an important consideration when deciding
on the duration and number of time series that are neces-
sary for a study. The work in this paper, presented in
preliminary abstract form (37–39), addresses these two
questions theoretically and experimentally.

THEORY

We assume that the MR signal response is given by a linear
shift-invariant filter applied to the underlying “activity” in
each voxel. (The history-dependent nonlinearity in fMRI
signals discussed recently by Friston et al. (13) is not
considered in this analysis.) The response function of this
filter to a single stimulus is denoted by r(t). We assume
throughout that the noise, z, is stationary and white, with
variance s2. We assume that a single stimulus is repeated
periodically. The goal is to estimate accurately the re-
sponse magnitude in each voxel time series. Our signal
model in each voxel, expressed in continuous and discrete
time, is

x~t! 5 a O
m50

M21

r~t 2 mT! 1 b 1 z~t! [1a]

xn 5 a O
m

m50

rn2mL 1 b 1 zn [1b]

x 5 @r~L!eN#Fa
bG 1 z [1c]

where a is the response magnitude, b is the signal base-
line, and xn 5 x(nDt) is the voxel signal at the nth sample
(expressed in vector form in Eq. [1c]). The N-vector r(L) is
defined by rn

(L) 5 ¥mrn2Lm; the N-vector eN is all ones. The
goal is to estimate a but b is also unknown. The estimate of
a depends on the repetition period T 5 LDt 5 SD 1 ISI and
on the number of trials M. The total length of the experi-
ment is MLDt 5 NDt.

Define P to be the N 3 2 matrix appearing in the RHS of
Eq. [1c] (pn,1 5 rn

(L) and pn,2 5 1). Then the minimum
variance linear unbiased estimator of a and b is given by
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If the stimuli are spaced far enough apart so that the
responses do not significantly overlap, then r(L) 5 rn2[n/L]L,
so

O
n

rn
~L! 5 M O

n50

L21

rn < MDt21m1 O
n

~rn
~L!!2 5 M O

n50

L21

rn
2

< MDt21m2 [3]

where mq 5 *0
0r(t)qdt. These integral approximations are

valid if Dt is small compared to the rise and fall times of
the response function.

We want to minimize Var(â) for a fixed amount of scan
time NDt by properly choosing the stimulation period LDt.
We can write M 5 N/L, and then
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Optimizing Eq. [4] with respect to T 5 LDt, we find

Topt 5 2
m1

2

m2
5 2

SE r~t! dtD 2

E r~t!2 dt

. [5]

This is equivalent to maximizing the expected value of
*ux(t) 2 x# u2dt, which shows that the optimum stimulus
period is based on balancing the time budget between the
stimulus response and the baseline state.

Theoretical Examples

The simplest response function is a “boxcar” of duration t:

rbox 5 H1 0 , t , t
0 otherwise.

In this case, m1 5 m2 5 t, and so Topt 5 2t; that is, equal
times should be spent in the stimulus response and in the
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baseline. A slightly more realistic response function is the
triangle wave with rise/fall time t:

rtri 5 H1 2 ut 2 tu/t 0 , t , 2t
0 otherwise.

In this case, m1 5 t, and m2 5 2t/3, so Topt 5 3t 5 3 z
FWHM (full width at half maximum of the response func-
tion). In this case, the optimal balance is to spend 1/3 the
time in the baseline and 2/3 in the stimulus response. For
fMRI, a reasonable estimate of the rise/fall time is t ' 5
sec, giving Topt ' 15 sec. For the gamma-variate impulse
response function (28),

rG~t;b,c! 5 H tbe2t/c t . 0
0 t , 0 we find Topt 5

2b4bG~b!2

G~2b!
z c.

[6]

Realistic values for fMRI are b 5 8.6, c 5 0.55 sec, giving
Topt 5 11.6 sec. If the SD is extended to 2 sec, then with
r(t) 5 rbox(t,2) * rG(t;8.6,0.55), Topt 5 12.3 sec (here, “*”
denotes convolution). For general parameters b, c in Eq.
[6], the time-to-peak is tpeak 5 bc; the width of the response
function is FWHM ' 2.35 z b1/2c, and Topt ' 7.09 z b1/2c '
3 z FWHM. (These latter two approximations are valid for
b $ 2.)

As our final mathematical result, we note that for longer
duration stimuli, 2 sec should be added to T for each
additional 1 sec of stimulation. We base this on the obser-
vation that if r(t) 5 rbox(t;t) * rbox(t;SD), with t . SD (a
trapezoidal waveform), then Topt 5 2 z SD2/(SD 2 t/3),
which is asymptotic to 2 z SD 1 2t/3 for SD .. t. That is,
for large SD, the optimal period T increases twice as fast as
SD; the increased time in the “on” phase must be balanced
by additional “off” time. In our linear model, for any given
impulse response function r(t), the response to a stimulus
of duration SD is r(t) 5 r(t) * rbox(t;SD). For large SD, this
function will have a long flat top with smooth transitions
at the beginning and end (a rounded trapezoid) for which
we have seen that Topt grows like 2 z SD for SD larger than
the rise and fall times of the impulse response. Figure 1
shows a graph of Topt versus SD for the gamma-variate
impulse response function, where r(t) 5 rG(t;8.6,0.55) *
rbox(t;SD).

Based on this, our ultimate theoretical recommendation
is

ISI 5 H14 2 SD SD , 3 s
8 1 SD SD . 3 s or T

5 H 14 SD , 3 s
14 1 2 z (SD 2 3) SD . 3 s . [7]

Note that the commonly used block-design choice of ISI 5
SD is slightly too small. It is important to note that the
optimal T will vary also as a function of the gamma variate
parameters. Unpublished data in our lab clearly indicate
that these parameters vary over space. This issue is beyond
the scope of this paper. This contrast function obtained in
Fig. 1 is simply an approximate guideline based on a
reasonable estimate of the response.

METHODS

Five subjects were scanned with echoplanar imaging (EPI)
using a three-axis gradient coil (40) on a GE Signa 1.5-T
scanner. Results from two subjects were discarded because
of significant motion artifacts. Two axial imaging planes
were obtained: one containing visual cortex and one con-
taining motor cortex. Acquisition parameters were: voxel
volume 5 3.7 3 3.7 3 7 mm3, TR 5 1 sec, TE 5 40 msec,
and time series length 5 360 images. Flashing 8-Hz red
LED visual stimulation was given using GRASS goggles.
Subjects performed bilateral finger tapping while the vi-
sual stimulus was on. We chose 2 sec as the SD since, in
the context of a cognitive experiment, the total task com-
pletion time can be as high as 2 sec. For two subjects,
separate time series with ISIs of 2, 4, 6, 8 10, and 12 sec
were collected. For one subject, separate time series with
ISIs of 6, 8, 10, 16, 20, and 24 sec were collected. A
“blocked” time series having timing of 20 sec on/20 sec off
was also collected for all subjects. Table 1 summarizes the

FIG. 1. Graph of optimal T 5 SD 1 ISI versus SD when the hemo-
dynamic response is modeled as the gamma-variate function con-
volved with a boxcar of duration SD (Topt was computed numerically
from Eq. [5]). Shown for comparison are the graphs of T 5 2 z SD
and the recommendation of Eq. [7].

Table 1
Summary of the Experimental Comparisons*

ISI (sec) SD (sec) # Cycles

20 20 9
24 2 13
20 2 16
16 2 20
12 2 25
10 2 30
8 2 36
6 2 45
4 2 60
2 2 90

*Time series length 5 360 images. TR 5 1 sec. For the event-related
design, SD 5 2 sec, and ISI is varied from 2 sec to 20 sec. The
blocked design is 20 sec on/20 sec off.
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experimental design. The time series order, and therefore
ISI order, was randomized for each subject.

From the experimental time series, both functional con-
trast-to-noise images and response curves were analyzed.
Functional contrast-to-noise images were created in the
following manner. First, an activated region of interest
(ROI) was determined from the “blocked” time series by
correlation analysis with a time-shifted boxcar function
(41). Second, from this ROI, average plots were obtained
for each time series of images. Third, using these time
plots, a reference function was synthesized by first aver-
aging every on/off cycle, then sequentially replicating the
average cycle for the entire time plot. Fourth, a correlation
image was created using each of the synthesized reference
functions (one reference function for each ISI). Finally, the
calculated correlation image was divided by the residual
time series standard deviation (after subtracting away the
reference function) on a voxel-wise basis to create a func-
tional contrast-to-noise image. Using the ROI determined
by step one above, the average contrast-to-noise value was
obtained from each contrast-to-noise image.

A second method for assessing functional contrast in-
volved calculating the integral of the rectified area around
the mean of averaged responses (obtained from the same
ROI for motor and visual cortex as used above). This inte-
gral was divided by the time per complete event-related
on/off cycle to obtain a measure of contrast per unit time.

For the simulations, response waveforms were created
by convolving the gamma-variate hemodynamic response
function described earlier with binary on/off functions
that represent the neuronal input. The contrast per unit
time was calculated in these synthesized responses in the
same manner as with the experimentally obtained re-
sponse curves: the integral of the rectified area around the
mean of curves was divided by the total stimulus cycle
time, T.

RESULTS

Figure 2 shows typical echoplanar images obtained and,
superimposed in white, visual and motor cortex regions
that demonstrated activation. Time series obtained from
these ROIs are shown in Fig. 3. Each time series plot in Fig.
3 is displayed having identical dynamic range. In each

FIG. 2. Typical echoplanar images from
the time series data. Superimposed in
white are the visual and motor cortex
voxels that demonstrated activation. The
time series in Fig. 3 were averaged over
these ROIs. Activated voxels were deter-
mined by correlation analysis using a
time-shifted boxcar function with the
blocked-design time series.

FIG. 3. Raw time series from the (a) visual and (b) motor ROIs in Fig.
2. The blocked-design paradigm time series is in the upper left. SD
is varied from 12 to 2 sec for the other time series.
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time series, all successive on/off cycles were averaged. The
cyclic-averaged time series, obtained from the raw time
series shown in Fig. 3, are plotted in Fig. 4. The fractional
signal change is shown in this display. At ISIs of 8 sec and
below, the averaged time series shows what appears to be
a pre-undershoot. This pseudo-pre-undershoot is because
the ISI was less than the time for the hemodynamic re-
sponse to fully return to baseline; therefore, the successive
stimulus was given during the falling stage of the previous
hemodynamic response. Figure 5 shows averaged time
series from the set that used longer ISIs. The response
function settles into a stable pattern above an ISI of about
8 sec.

Figure 6 shows contrast-to-noise images containing vi-
sual and motor cortex of two subjects. The same scale was
used for all images. The contrast-to-noise decreases signif-
icantly below an ISI of 6 sec. The images obtained at ISI of
8 to 12 sec look qualitatively similar to those obtained
using the blocked design. Figure 7 demonstrates that when

the contrast and intensity of the images are scaled up,
activation is apparent even in the 2 sec on/2 sec off. Note
that the regions of highest contrast-to-noise differ slightly
between the blocked (ISI, SD 5 20,20) and event-related
(ISI,SD 5 2,2) series types. This is particularly apparent in
the visual cortex activation images, and may reflect differ-
ential responsivity across specific regions and/or vascula-
ture structures of the brain.

A matrix of synthesized fMRI time series was created by
convolution of a set of systematically varied boxcar neu-
ronal input functions with the gamma-variate hemody-
namic response used in the Theory section. The input ISI
and SD were varied, at 1-sec intervals, from 1 to 32 sec.
Figure 8a and b, respectively, shows the simulated “raw”
responses and responses obtained after the response pat-
tern reached a steady state using the same timing as used
experimentally. These time series show an extremely sim-
ilar shape and latency to those obtained in the data. In fact,
the differences in time series within the data are consid-
erably greater than the differences between these experi-
mental and simulated time series. Figure 9 shows the
resulting functional contrast matrix, calculated in the
same manner as the functional contrast from the experi-
mental time series plots. As in the Theory section, we see
that the highest contrast results from balancing ISI and SD.

Experimental and simulated results are summarized and
compared in Fig. 10, which shows the single-event con-

FIG. 5. Cycle-averaged time series from (a) visual and (b) motor
cortex. The fractional signal change is shown. ISI range is 8 to 20
sec. The response function settles into a stable pattern above an ISI
of about 8 sec.

FIG. 4. Cycle-averaged time series from (a) visual and (b) motor
cortex. The fractional signal change, relative to the time point col-
lected at the start of each 2-sec activation, is shown. ISI range is 2
to 12 sec. At ISIs of 8 sec and below, the apparent pre-undershoot
is due to successive activation during the falling stage of the pre-
vious hemodynamic response. (Error bars are SEMs.)
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trast per unit time normalized to the contrast obtained
during the block design time series. The optimal experi-
mental ISI for a 2-sec SD is about 12 sec. At the optimal ISI,
the experimental contrast per unit time is only 35% lower
than that of blocked-design paradigms. This is remarkable

FIG. 6. Functional contrast-to-noise images from visual and motor cortex of two subjects. The same grayscale range was used for all
images. The contrast-to-noise decreases rapidly below ISIs of 6 to 8 sec. The functional contrasts at ISIs of 8 to 12 sec appear qualitatively
similar to those of the blocked-design time series.

FIG. 7. Comparison of activated regions from the blocked and the
event-related ISI 5 2 sec paradigm, each image shown with a
separate intensity-to-grayscale mapping chosen to enhance the
visual contrast of the results. The scaled-up single-event contrast-
to-noise image demonstrates that an alternating 2-sec-on/2-sec-off
paradigm can be used to create a functional image, but the contrast
is barely above the noise. Also, the regions of high contrast-to-noise
differ slightly, suggesting differential responsivity to rapidly alternat-
ing stimuli across voxels within an activated region.

FIG. 8. Synthesized (a) raw responses and (b) responses obtained
after the response pattern reached a steady state. Each simulated
time series was created by convolution of a boxcar input function
with the gamma-variate hemodynamic function described in the
Theory section. The raw responses were created by convolution of
a boxcar function representing the neuronal input.
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because with blocked-design studies, the stimulus is “on”
about half the time, and with this single-event timing, the
stimulus is “on” only 14% of the time.

A projection through the surface in Fig. 9 along SD 5 2
sec, shown as the dotted line in Fig. 10, reveals a contrast
curve shape that is similar to the experimental contrast
curve shape. The optimal simulated ISI is similar to that
predicted theoretically but slightly shorter than that dem-

onstrated experimentally. This difference is likely due to
minor differences in gamma-variate parameters used that
would best fit the experimental data presented. While a
change of the gamma-variate parameters can alter the peak
response time, it does not alter the maximum contrast
obtained relative to the calculated block design, since the
function is linear. Another possibility is that the post-
stimulus undershoot, not considered in the gamma-variate
hemodynamic response model, could lengthen the opti-
mal ISI slightly.

The functional contrast per unit time for the synthesized
response is about 70% lower than that of blocked-design
time series. This difference in contrast (but not optimal
ISI) between the experimental results and the simulations
suggests that the amplitude of the ER-fMRI data, relative to
steady-state amplitude during a sustained stimuli, is larger
than the relative amplitude of the synthesized response.
This is in agreement with the results of Boynton et al. (12)
and Vazquez and Noll (15), which suggested that one of
the only aspects of the hemodynamic response that devi-
ated from linearity was the amplitude of the response
arising from brief stimulus durations. These results are not
necessarily contrary to the results of Dale and Buckner (14)
because, after a brief stimulus duration, the responses to
successive brief stimuli may add linearly. It is only the
initial amplitude of the first brief stimulus that is greater
than that predicted in a linear system.

CONCLUSIONS

An analytic expression for the optimal constant ISI has
been derived. This result has been confirmed experimen-
tally using ER-fMRI time series of primary visual stimuli
and motor tasks with varying ISI. The theoretically opti-
mal ISI, given the gamma-variate function of Cohen (28) is
10.3 sec for a SD of 2 sec. As shown in Fig. 8, the experi-
mentally derived optimal ISI, for an SD of 2 sec, is about 12
sec. The contrast-per-unit-time versus ISI curve is much
steeper for shorter-than-optimal ISIs than for longer-than-
optimal ISIs. It is therefore it is much less costly, from a
contrast-to-noise standpoint, to err on the long ISI side.

The use of a constant ISI is only a special (and likely
suboptimal) category of ER-fMRI paradigms. Previous work
has demonstrated that randomization of ISI in a single time
series, used in combination with deconvolution techniques,
is likely to allow for a shorter average ISI with improved
functional contrast (14,31,42,43). While these randomized
ISI ER-fMRI techniques represent a substantial improvement
in fMRI methodology for mapping regions of activation, ac-
curate interpretation of derived results (i.e., absolute re-
sponse magnitudes) requires the assumption that the event-
related response behaves in a linear manner. Calculation of
the optimal average ISI in the case where the ISI is random-
ized in the time series is the subject of ongoing research in
this laboratory, but is beyond the scope of this paper. Prelim-
inary work suggests that with deconvolution techniques and
ISI randomization, optimal functional contrast is obtained by
having an on/off distribution of 50%/50%, and that the ISI
can be as short as desired, within the constraints of subject
response times.

It has been found that with constant ISI, the experimental
functional contrast per unit time was only 35% less than that

FIG. 9. A 32 3 32 matrix of synthesized functional contrasts. The
functional contrasts were calculated from the simulated time series
plots in the same manner as the experimental time series plots. The
input ISI and SD were each varied, at 1-sec intervals, from 1 to 32
sec. All time series were created in the same manner as in Fig. 8.

FIG. 10. Synthesized and experimental single-event contrast per
unit time versus ISI. Contrast is normalized to the contrast obtained
during the blocked-design time series (blocked-design contrast 5
1). The experimental optimal ISI for a 2-sec SD is about 12 sec. At
the optimal ISI, the experimental contrast per unit time is only 35%
lower than that of a blocked-design paradigm. The synthesized
optimal ISI for a 2-sec SD is about 10 sec. At the optimal ISI, the
synthesized contrast per unit time is 65% lower than that of a
blocked-design paradigm.
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obtained with a blocked 20-sec-on/20-sec-off paradigm.
While the optimal ISI was similar, this experimental ER-fMRI
contrast was much larger than a synthesized time series
using convolution of a gamma-variate hemodynamic “im-
pulse response” with a boxcar neuronal input function. At
the optimal ISI, the functional contrast of the synthesized
response was about 65% less than that of a blocked-design
paradigm. An important point to consider is that regardless
of the specific parameters of the gamma function, the contrast
obtained when using a linear contrast function is linearly
proportional to the fraction of time that the stimulus is on.
Therefore, the specific parameters chosen for the gamma
function do not change these conclusions.

This difference in functional contrast is likely due to the
fact that the experimental ER-fMRI amplitude, relative to
steady-state “on” amplitude, is greater than that of the
relative response created by linear convolution. Also, the
post-stimulus undershoot, not considered in the gamma-
variate hemodynamic response model, may enhance the
functional contrast slightly. It is important to note that
these results are from averaged ROIs in the visual and
motor cortex, and may vary significantly across voxels
within and between activated brain regions.

Reasons for nonlinearities in the event-related response
can be neuronal, hemodynamic, and/or metabolic in na-
ture. The neuronal input may not be a simple boxcar
function. Instead, an increased neuronal firing rate at the
onset of stimulation (neuronal “bursting”) may cause a
slightly larger amount of vasodilation that later reaches a
plateau at a lower steady-state level. The amount of neu-
ronal bursting necessary to significantly change the hemo-
dynamic response, assuming a linear neuronal-hemody-
namic coupling, is quite large. For example, to account for
the almost double functional contrast for the experimental
relative to the linear convolution-derived single-event re-
sponses, the integrated neuronal response over 2 sec must
double. Assuming that neuronal firing is only at a higher
rate for about the first 50 msec of brain activation, the
neuronal firing rate must be 40 times greater than steady
state for this duration.

BOLD contrast is highly sensitive to the interplay of
blood flow, blood volume, and oxidative metabolic rate. If,
on activation, any one of these variables changes with a
different time constant, the fMRI signal may show fluctu-
ations until a steady state is reached (44–46). For instance,
an increase in blood volume would slightly reduce the
fMRI signal because more deoxyhemoglobin would be
present. If the time constant for blood volume changes
were slightly longer than that of flow changes, then the
activation-induced fMRI signal would first increase and
then be reduced as blood volume later increased. Mande-
ville et al. (47) have demonstrated in rats that during
forepaw stimulation, cerebral blood volume changes are
slower than BOLD signal changes.

The same BOLD effect would be obtained if the time
constant of oxidative metabolic rate were slightly slower
than that of flow and volume changes. Evidence for in-
creased oxidative metabolic rate after 2 min of activation is
given by Frahm et al. (44), but no evidence is given to
suggest that the time constant of the increase in oxidative
metabolic rate is only seconds longer than the flow in-
crease time constant, as would be required to be applicable

only to relatively high-amplitude single-event responses.
These hemodynamics, which may also differ on a voxel-
wise basis, remain to be fully characterized. In addition,
differences in the degree of neuronal activation, “burst-
ing,” and neuronal habituation may exist between higher
order and primary brain activation, causing differences in
the measured response parameters between cognitive and
primary activation even for durations as short as 2 sec.

In this work, the optimal ISI for a constant ISI strategy
has been experimentally demonstrated and theoretically
derived. While use of a constant ISI for ER-fMRI may be
preferable only in specific types of cognitive studies, in-
formation derived from these studies reveals nonlineari-
ties in the hemodynamic response. These nonlinearities
may pose a limitation in the precise interpretation of re-
sults obtained by linear deconvolution of a random stim-
ulus input from the evoked hemodynamic responses.

Future work in event-related experimental optimization
relies on what further information can be derived from
these responses and in methods to work around nonlin-
earities. Between-region, between-voxel, between-subject,
and stimulus-dependent variations in amplitude, latency,
shape, and responsivity of the ER-fMRI signal remain un-
characterized. Furthermore, neuronal-physiologic mecha-
nisms underlying these characteristics remain unclear.
Work directed at clarifying the aspects of the ER-fMRI
signal as well as the underlying mechanisms of the signal
will certainly result in substantial increases in the overall
utility of fMRI.
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APPENDIX

Mathematical Notation

SD, stimulus duration. ISI, interstimulus interval; time from
end of one stimulus to start of the next. T, repetition interval
(SD 1 ISI). Dt, sampling interval (5 TR in single-shot imag-
ing). r(t), ideal response function to a single stimulus occur-
ring at time t 5 0. x(t), voxel response function. a, amplitude
of r(t) in voxel response function. b, baseline value of x(t). §,
noise time series. s2, variance of noise. L, number of samples
in repetition interval (5 T/Dt). M, number of stimuli in an
experiment. N, number of time series samples in an experi-
ment (5 LM). n, sample index, from 0 to N21. r(L), N-vector
giving summed ideal response to a train of stimuli. eN, N-
vector of all ones. P, N 3 2 matrix in Eq. [1c] 5 operator that
maps unknowns (a, b) to voxel response vector x. x, sampled
voxel response N-vector. mq, *0

`r(t)qdt for q 5 1,2. Topt, “op-
timal” repetition interval. b,c, parameters of the gamma-vari-
ate response, Eq. [6]. FWHM, full width at half maximum (of
a response function).
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