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Abstract: In this study,we implementeda newmethodfor measuringthe temporaldelayof functional
magneticresonanceimaging(fMRI) responsesandthenestimatedthe statisticaldistributionof response
delaysevokedby visualstimuli(checkeredannuli)withinandacrossvoxelsin humanvisualcortex.We
assesseddelay variabilityamongdifferentcortical sites and betweenparenchymaand blood vessels.
Overall,81% of all responsivevoxelsshowedactivationin phasewiththe stimuluswhilethe remaining
voxelsshowedantiphase,suppressiveresponses.Meandelaysfor activatedandsuppressedvoxelswere
not significantlydifferent ( P , 0.001). Cortical flat maps showedthat the patternof activatedand
suppressedvoxels was dynamicallyinducedand dependedon stimulussize. Mean delays for blood
vesselswere0.7–2.4 sec longerthanfor parenchyma( P , 0.01). However,bothparenchymaandblood
vesselsproducedresponseswithlong delays.We developeda modelto identifyandquantifydifferent
componentscontributingto variabilityin the empiricaldelay measurements.Within-voxelchangesin
delayovertimewerefullyaccountedfor by theeffectsof empiricallymeasuredfMRI noisewithvirtually
no measurablevariabilityassociatedwiththestimulus-inducedresponseitself.Acrossvoxels,as muchas
47% of the delayvariancewasalso the resultof fMRI noise,withthe remainingvariancereflectingfixed
differencesin responsedelayamongbrainsites. In all cases, the contributionof fMRI noiseto the delay
variancedependedon the noise power at the stimulusfrequency.White noise models significantly
underestimatedthe fMRI noiseeffects. Hum. Brain Mapping 13:74–93, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

Functionalmagneticresonanceimaging(fMRI) has
becomean increasinglypopulartechniquefor study-
ing brainactivationin responseto sensory,motor,or

cognitiveevents.fMRI responsesthatare time-locked
to a regularalternationof experimentaland control
stimuli(or tasks)can be detectedusingvarioustech-
niques such as temporalcross-correlation,statistical
parametricmapping,andprincipalcomponentsanal-
ysis[Fristonet al., 1990; Bandettiniet al., 1993; Forman
et al., 1995; Strother et al., 1995; Backfrieder et al.,
1996]. Althoughthe time courseof the fMRI signalis
typically used to assist detectionof valid fMRI re-
sponses, the temporaldelay of the response,itself,
may be an importantfocus of interest.However,the
delayof thefMRI responsedoesnotdirectlydepictthe
timingof the underlyingneuralactivation.Rather,it
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reflects the temporal properties of both the neural
events and the rather sluggish hemodynamic compo-
nents of the blood oxygenation level dependent
(BOLD) mechanism [DeYoe et al., 1994]. Conse-
quently, the study of fMRI response delays is impor-
tant for determining the limitations of fMRI in resolv-
ing the chronology of brain activation. In this latter
respect, fMRI response delays have been used to re-
solve different stages of brain processing [Rao et al.,
1995] and to depict mental chronometry [Menon et al.,
1998]. Moreover, the fMRI response delay is the pri-
mary parameter of interest in a technique termed
“temporal phase mapping,” used previously to map
the visual and auditory organization of human cere-
bral cortex [Engel et al., 1993, 1994, 1997; Sereno et al.,
1995; DeYoe et al., 1996]. Despite this interest, a de-
tailed description of the variability of the fMRI re-
sponse delay has been lacking, thus leaving uncer-
tainty concerning the accuracy of timing-based fMRI
response measures.

It is often assumed that all fMRI voxels have the
same response delay, that is, that they are time and
space invariant. However, examinations of empirical
fMRI data have revealed variations in response delay
of several seconds [Lai et al., 1993; Lee et al., 1995;
Saad et al., 1995; Kruggel and von Cramon, 1999a,
1999b]. Such variation was found in repeated mea-
surements from single voxels and in simultaneous
measurements across voxels at different brain sites.
This relatively wide range of response delays has been
attributed to the delayed flow of oxygenated blood
through large veins draining the sites of neuronal
activation [Lai et al., 1993; Lee et al., 1995]. However,
such variation could also reflect spatial and temporal
heterogeneity in neuronal or hemodynamic function
and anatomy, or could simply reflect the presence of
fMRI noise [Weisskoff et al., 1993; Biswal et al., 1995,
1996; Mitra et al., 1997; Saad et al., 1997b, 1997c; Krug-
gel and von Cramon, 1999a, 1999b]. The relative im-
portance of each of these factors is not known.

Finally, previous work has shown that most acti-
vated voxels respond temporally “in phase” with the
time course of a stimulus, though others are modu-
lated “out of phase” or “antiphase.” Such responses
have been alternately attributed to neuronal or hemo-
dynamic factors, or imaging artifacts [Seitz et al., 1990;
Seitz and Roland, 1992; Jesmanowicz et al., 1993;
Haxby et al., 1994; Lee et al., 1995; Saad et al., 1995].
Their true origin remains uncertain and more detailed
data are needed to help settle the controversy.

To address these issues, we implemented an effi-
cient algorithm for measuring response delays in fMRI
data and used it to estimate the delay variance across

time and space and for parenchyma versus blood
vessels. These empirical observations are described
below in Part I. We then estimated the effect of fMRI
noise on the delay variance and proposed a model for
parceling the sources contributing to the variance of
the empirical delay estimates. The model was used to
estimate the delay variability in time and space of
stimulus-induced fMRI responses without the con-
tamination of fMRI noise. These observations are de-
scribed in Part II. Preliminary reports of this work
have appeared previously [Saad et al., 1995, 1996,
1997a, 1997b, 1997c, 1999a, 1999b; Saad, 1996].

PART I: EMPIRICAL METHODS

Subjects

Data were collected from four male and three fe-
male subjects (21–42 years) with no metallic implants
and no known neurological or visual deficits. Subjects
read and signed a detailed consent form describing
the experimental procedures as approved by an inter-
nal review board. Prior to data collection, subjects
were trained to position their head in a model of the
gradient head coil, adjust the custom optical system to
allow viewing of the video images, and perform the
visual task while constantly fixating on a point in the
center of the visual field.

Visual stimuli

High-quality visual stimulation was achieved using
a custom optical system designed to project images
directly onto the retinae of subjects, thereby providing
high-luminance, a 60° field of view, and minimizing
the effects of changes in pupillary size [DeYoe et al.,
1994]. Custom computer graphical images were gen-
erated using a Cambridge Instruments VSG 2/3 video
card and displayed via a Sharp XG2000U color LCD
video projector driven by a microcomputer. A vari-
able, neutral density, polarizing filter was used to
adjust the average luminance of the images to a com-
fortable photopic range for each subject.

The visual stimulus consisted of a black and white
checkered annulus (approximate contrast 97%) coun-
terphase flickered at 8 Hz, centered on a fixation point
(Fig. 1A) [DeYoe et al., 1994]. The stimulus back-
ground was equiluminent gray in all but the first three
cases (CL, CM, and DM) where it was black. Check
size was scaled with eccentricity. To stimulate differ-
ent retinotopic zones, we used annuli having average
eccentricities of 3° (range 1.7°–4.3°), 9° (range 5°–13°),
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and 24° (range 13.3°–34.7°). The size and eccentricity
of the annulus was constant throughout an individual
fMRI scan. A stimulus cycle was defined as the period
during which the stimulus was presented (ON period)
followed by the period during which the stimulus was
turned off (OFF period).

Subjects were required to maintain gaze on the fix-
ation point throughout the scan. To guarantee that
attention was concurrently directed to the stimulus
pattern, subjects were required to perform a visual
task during the ON periods (tasks 1 and 2) or during
both ON and OFF periods (task 3). Figure 1B illus-
trates the three types of visual tasks presented.

In the first task, three target groups consisting of
one, two, or three ellipses that were superimposed at
equally spaced positions around the checkered annu-
lus [DeYoe et al., 1996]. The subject performed a one-
back comparison to determine whether the target pat-
tern on each successive presentation had been simply
rotated, or both mirrored and rotated about the fixa-
tion point.

In the second task, two targets consisting of
checkered dots were superimposed on the annulus
at equal angular distances from the 12-o’clock posi-
tion. During successive ON periods, subjects deter-
mined whether the target dots moved closer to, or
farther away from, the 12-o’clock position. Subjects
indicated their decisions by activating one of two
manual switches.

During the OFF periods in tasks 1 and 2, subjects
performed sham responses by randomly pressing one
of the two manual switches at approximately the same
rate as during the ON period.

In the third task, the stimulus consisted of the
checkered annulus and a thin colored line overlaid on
the fixation point. During both ON and OFF periods,
subjects were required to determine whether the thin
line contained within the fixation point changed be-
tween red and blue colors.

Seventy-five of 89 data sets were obtained using a
stimulus completing five cycles in 200 sec (1/40 Hz).
To study the effects of stimulus cycle frequency on the
distribution of response delays, we collected fourteen
additional data sets using faster (1/28 Hz) and slower
(1/64 Hz) stimulus cycles.

To obtain an estimate of the fMRI signal variation in
the absence of a stimulus, control scans were also
obtained in which only the fixation point was pre-
sented against a uniform gray field of the same aver-
age luminance as the checkered annuli. For these
scans, subjects passively gazed at the fixation point.

To reduce motion artifacts, all images in the fMRI
time series were registered to a set of reference echo
planar images [Cox and Hyde, 1997]. The reference
echo planar images were selected from fMRI data sets
acquired immediately before or after the high-resolu-
tion anatomical or angiography data sets.

Figure 1.
Experimental paradigm for visual stimu-
lus and delay response measurement.
(A) Visual stimuli consisted of flickering
checkered annuli presented for 20-sec
(ON) periods alternating with equal pe-
riods of fixation point alone (OFF) for
five ON/OFF cycles. (B) Behavioral
tasks: Task 1, subjects determined if the
target pattern had been rotated or mir-
rored. Task 2, subjects determined if
the targets moved closer to, or farther
away from, the 12-o’clock position.
Task 3, subjects determined whether a
marker at the fixation point changed
between red and blue colors. (C) Ex-
ample showing time delay (gray shading)
of fMRI response (bottom) relative to
ideal sinusoidal response (middle) and
stimulus time course (top).
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Scanner and pulse sequence

Brain images were obtained with a 1.5 T General
Electric Signa scanner equipped with a custom three-
axis, shielded head coil designed for rapid gradient
field switching [Wong et al., 1992]. The spatial resolu-
tion was set by a 64 3 64 voxel matrix covering a 24 3
24 cm field of view with a slice thickness of 4–8 mm.
This gave an in-plane resolution of 3.75 3 3.75 mm.
The pulse sequence used during image acquisition
was a gradient-recalled EPI sequence with an initial
90° RF pulse, an effective echo time (TE) of 40 ms, and
an image repetition rate (TR) of 2 sec [DeYoe et al.,
1994]. A typical scan sequence consisted of a series of
images (N 5 102–110) of (10–20) contiguous slices
covering most of the brain. The first two images of the
scan series were discarded to allow brain tissue mag-
netization to achieve steady state. The remaining im-
ages (100–108) in the scan sequence constituted the
functional data set used to create the functional im-
ages. The mean and linear trends were removed from
each of the voxel time series by linear regression. In all
but three of the 87 data sets obtained with the active
visual stimulus, the scan sequence was repeated 2–3
times for image averaging. In the remaining three data
sets the scan sequence was performed only once. Dur-
ing the scanning session, control scans were inter-
spersed with active scans.

During each scanning session, a high-resolution, T1-
weighted, spoiled GRASS (gradient recalled acquisi-
tion in steady state) anatomical data set was collected
to localize functional activity and to create a triangu-
larly tessellated computer model of the surface of the
brain. The anatomical data set covered the whole brain
at a resolution of 0.94 3 0.94 3 (1.0–1.2) mm. In
addition, for three of the subjects, an MR 2D time-of-
flight (2D-TOF) angiography data set was collected
using a vascular spoiled GRASS sequence (flip an-
gle 5 50°, TR 5 45 ms, FOV 5 24 cm) with voxel size
of 0.94 3 0.94 3 1.5 mm. This pulse sequence was
optimized for cortical venous mapping and was sen-
sitive to slow flow states [GE Medical Systems, 1990].

Active voxel detection and estimation of
response delays

This stage of analysis involved detecting voxels ac-
tivated by the visual stimulus and estimating their
response delay relative to the stimulus time course.
This was accomplished using a modified cross-corre-
lation technique whereby the fMRI time series for each
voxel is cross-correlated with a reference time series
approximating the fMRI response to the stimulus.

This cross-correlation technique assumes that the
reference time series r(t) and the fMRI time series s(t)
are modeled by the following set of equations [Bendat
and Piersol, 1986].

r~t! 5 x~t! 1 m~t!

s~t! 5 y~t! 1 n~t! 5 ax~t 2 Dt! 1 n~t! (1)

where the reference time series r(t) is comprised of
x(t), the ideal fMRI response, and a noise component
m(t). The fMRI response s(t), is comprised of a scaled
(a), and time-shifted (Dt) version of x(t) plus a noise
component, n(t). Assuming that the noise components
m(t) and n(t) have zero mean and are uncorrelated
with x(t) and with each other, the cross-correlation
coefficient function Rrs(t) for different delays between
r(t) and s(t) is reduced to:

Rrs~t! 5 aRxx~t 2 Dt! (2)

Rxx(l) is the autocorrelation of x(t) and is maximal
when l 5 0. Consequently, Rxx(t 2 Dt) is maximal
when t 5 Dt. Thus by determining the delay t at
which Rrs(t) is maximal, we can estimate the delay Dt
between r(t) and s(t) as well as the maximal cross-
correlation coefficient r(Dt) defined by:

r~Dt! 5
Rrs~Dt!

ÎRrr~0!Rss~0!
(3)

Each voxel was considered activated when the
cross-correlation coefficient r(Dt) was larger than a
predetermined threshold value rt 5 0.50, correspond-
ing to a false positive probability less than 0.0001 for
each voxel after a Bonferroni correction [Johnson and
Wichern, 1992; Saad, 1996]. For these experiments, the
reference time series r(t) consisted of a sinusoid hav-
ing a frequency equal to the stimulus cycle frequency.
Thus the noise component m(t) was null and r(t) 5
x(t). Overall, in our data the sinusoid was correlated
with the average fMRI response at a level of 0.97,
thereby indicating that it was a good approximation.

Because of the discrete nature of r(t) and s(t), the
determination of r(Dt) and Dt at a time resolution
smaller than the sampling interval requires difficult
nonlinear curve fitting as neither the maximum value
of r(t) nor the value of Dt are known. In addition, the
estimation of r(t) in the time domain requires convo-
lution between reference and fMRI time series and
thus is computationally inefficient. To overcome these
difficulties, we applied a computationally efficient al-
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gorithm that used the Hilbert transform (H[.]) [Bendat
et al., 1986; Bendat and Piersol, 1993] to obtain high-
resolution time delay estimates. These estimates were
also used to compute the variance of the delays across
voxels. The algorithm, described in the appendix, in-
cluded the computations required by the cross-corre-
lation technique and was used to detect activated vox-
els without additional computational costs.

The activated voxels were split into two complimen-
tary groups based on the polarity of their response.
Voxels were considered positive (in phase) when the
fMRI signal increased from baseline level approxi-
mately coincident with the onset of the stimulus. Con-
versely, voxels were considered negative (antiphase)
when the fMRI signal decreased from baseline with
stimulus onset. Mean delays and variances were com-
puted separately for each of the two groups. Voxel
delay was represented on the corresponding brain
maps according to a circular pseudocolor scale.

Separation of voxels into vascular and
parenchymal pools

To determine the difference in activation delays be-
tween large blood vessels and parenchyma, we used
two methods to classify activated voxels as vessel or
parenchyma related.

In the first method, we imaged blood vessels di-
rectly using 2D-TOF sequence capable of resolving
blood vessels greater then 2 mm in diameter. To iso-
late blood vessels from other tissue, we applied an
image intensity threshold (It) followed by a 3D-cluster
volume threshold of 10 ml, the equivalent of 8 contig-
uous voxels. 2D-TOF voxels that exceeded It and
formed clusters larger than 10 ml were categorized as
blood vessels. Figure 2 shows 3D renderings of seg-
mented 2D TOF angiography from one subject at lib-
eral, medium, and conservative It. With It 5 0.2, most
vessels detectable by 2D-TOF were identified; how-
ever, the segmentation was noisy and the likelihood of
falsely classifying parenchymal tissue as blood vessels
was high. Conversely, with It 5 0.8, only large vessels
were identified and the likelihood of classifying pa-
renchymal tissue as blood vessels was low. fMRI vox-
els were ascribed to the vasculature pool if they spa-
tially overlapped with blood vessel voxels by more
than a preset threshold (Ot). We considered overlap
thresholds ranging from 0.01% (minimal overlap) to
50%. Because voxel classification was dependent on
the arbitrary thresholds It and Ot, we repeated the
comparison of delay distributions at (It, Ot) combina-
tions ranging from (0, 0.01%) to (1, 50%). The Student’s
t test and F test were used to compare delay mean and

variance between voxels in the vascular pool and
those in the parenchymal pool. The analysis was per-
formed for 12 data sets, obtained from three subjects
with a stimulus cycle duration of 40 sec.

In the literature, an alternate technique for identify-
ing blood vessels assumes that they are associated
with large signal changes [Lai et al., 1993; Menon et al.,
1993, 1998; Ogawa et al., 1993; Lee et al., 1995]. Con-
sequently, we attempted to isolate blood vessels from
parenchyma using the normalized signal change de-
fined as Sn 5 100 3 (ON-OFF)/OFF. Because the
threshold criterion separating these two groups was
arbitrary, we computed mean delay difference at var-
ious thresholds covering the range of observed Sn. We
then sought to determine the largest significant differ-
ence in mean delay between voxels with high versus
low Sn, thereby identifying the largest difference in
mean delay between blood vessels and parenchyma.

Response delay variability within voxels

Much of our analysis focused on the variability in
response delays across voxels (sacross

2 ). However, the
response delay at a specific voxel can also vary over
time. To estimate this within-voxel delay variance
(swithin

2 ), we repeated the same fMRI scan multiple
times during the same experimental session (Nrep 5
12, 14, and 20 for experiments NY, OU, and OW,
respectively). The stimulus cycle duration was 40 sec.
The within-voxel variance was estimated from the
response delays for individual voxels across scan rep-
etitions in which the voxels were activated. Voxels
that were activated in less than four out of the Nrep
scan repetitions were not considered. This ensured a
match between the mean SNR of the pool of voxels
used in estimating swithin

2 and that of the voxels used
in estimating sacross

2 . The estimated within-voxel vari-
ance (swithin

2 ) for the entire data set was the average of
the variances estimated at each activated voxel.

PART I: EMPIRICAL RESULTS

Response delay variability across voxels

Figure 1C illustrates the relative timing between the
visual stimulation (top), the reference time series

Figure 2.
3D rendering of segmented 2D time-of-flight angiography obtained
with a vascular Spoiled GRASS sequence optimized for cortical
venous mapping. Blood vessels (red) were segmented using image
intensity threshold (It) and a volume cluster threshold of 10 ml.
The three renderings show the segmented vessels at low (0.2),
medium (0.4), and high (0.8) It. P.O.S. 5 parieto occipital sulcus.
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(middle), and the fMRI response (bottom). The refer-
ence time series represents an ideal fMRI response
with no response delay. In this example, the average
fMRI response across activated voxels is delayed by
6.6 sec (gray shading) relative to the reference wave-
form.

The distribution of response delays for all active
voxels in a representative single scan is illustrated in
Figure 3 (A,C,E). Figure 3 (B, D, F) shows the average
waveforms for the fMRI responses for all active vox-
els. The results are compared for three different stim-
ulus cycles (TON-OFF) corresponding to ON/OFF peri-
ods of 64 (A,B), 40 (C,D), and 28 (E,F) sec, respectively.
The average waveform for negative responses tended
to be slightly noisier than for positive responses, prob-
ably as a result of the smaller number of voxels con-
tributing to the average. Note the decrease in the total
number of activated voxels (N) with decreasing stim-
ulus cycle duration.

For each subject and each of the three stimulus cycle
durations, both positive (1, black) and negative (2,
gray) responses were observed. Figure 3D shows that
for positive voxels, the fMRI signal increased from
baseline coincident with the onset of the stimulus.
However, for negative voxels, the fMRI signal de-
creased from baseline with stimulus onset. The latter
observation, in agreement with Lee and colleagues
[1995], indicates that the fMRI responses associated
with negative voxels are not caused by excessively
delayed activation. Rather, negative fMRI responses
are primarily the result of suppression of the fMRI
signal occurring simultaneously with activation of
positive voxels.

On average across all subjects, 81% of the activated
voxels had positive responses. However, the propor-
tion varied for individual subjects and stimulus cycle
durations. All data sets contained at least some voxels
having negative responses and, in some data sets, this
latter group accounted for up to 50% of the activated
voxels. Overall, the mean negative response delays
did not differ significantly from their positive coun-
terparts (t test, P , 0.001). For positive responses, the
mean of the response delays did not vary significantly
(ANOVA, P , 0.01) across cycle durations: 8.50, 8.00,
9.27 sec (Table IA) for cycle durations of 28, 40, and 64
sec, respectively. In contrast, the variance of the delays
(sacross

2 ) increased considerably with increasing cycle
durations. In all but one of the 21 pairs of data sets
compared, this increase was significant (F-ratio test,
P , 0.01). The exception was one pair of data sets (28-
and 40-sec cycle duration) where the variance increase
was significant at P , 0.03. On average, the variance
increased from 2.53 to 4.36 to 23.46 sec2 (Table IB).

One concern was that negative responses might
reflect differences in the focus of attention (periph-
ery versus fixation) for ON versus OFF periods.
Therefore, we repeated the delay analysis for three
subjects using a task in which the subject was re-
quired to detect a change in color at the fixation
point continuously throughout the scan. The result-
ing data did not differ from that obtained with the
other tasks.

Spatial distribution of response delays

Figure 4 shows an example of the spatial distribu-
tion of response delays on unfolded maps of occipital
cortex for one representative subject out of three. The
data shown in the different maps of Figure 4 were
obtained using annular checkerboards having mean
eccentricities of 3°, 9°, and 24°, and a stimulus cycle
duration of 40 sec.

In the central portion of the maps (along the calcar-
ine sulcus), the distribution of positive (yellow-red)
and negative (blue-green) responses varied depending
on the size (eccentricity) of the checkered annulus.
This zone encompassed the most strongly retinotopic
visual areas (V1, V2, V3, VP, V4). In this region, iso-
eccentricity contours (not illustrated, see DeYoe et al.,
1996) representing a fixed eccentricity in the visual
field run nearly perpendicular to the calcarine sulcus
in a manner virtually identical to the obvious bound-
ary between positive and negative responses visible in
the left and right maps. Thus, in this region the dis-
tribution of positive and negative responses appears
to be highly dynamic and reflects the spatial configu-
ration of the stimulus. For example, voxels located in
the middle of the calcarine sulcus had negative re-
sponse delays for the 3° annulus but had positive
response delays for the 24° annulus. Note also that the
transition from positive to negative responses was
typically abrupt rather than smoothly graded. For vi-
sual areas outside this region, retinotopy is not as
strong and the distribution of positive and negative
responses appears more constant.

Mean response delays varied significantly (t test,
P , 0.01) by as much as 1.35 to 2 sec across different
visual areas [DeYoe et al., 1994, 1996]. However, such
differences did not seem to reflect any likely connec-
tional hierarchy, nor did they appear to be related to
neuronal latencies, which are reported to differ by
only a few tens of milliseconds across visual areas
[Buchner et al., 1994; Bullier et al., 1996; Nowak and
Bullier, 1997; Schmolesky et al., 1998].
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Figure 3.
(A, C, E): Response delay distributions for positive (1 black) and
negative (2 gray) responses obtained for stimulus cycle durations
(TON-OFF) 28, 40, and 64 sec. (B, D, F): Examples of stimulus
presentation time course (top), average positive (middle), and

negative (bottom) fMRI responses. Gray shading in (D) highlights
fMRI baseline signal during 20-sec prestimulus period. Note that
negative responses are suppressed below prestimulus baseline.
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Response delays for large blood vessels vs.
parenchyma

We used 2D-TOF data to categorize voxels as blood
vessels and parenchyma. Figure 5A shows normalized
histograms of the response delay for the two pools.
Overall, the mean delay for blood vessels was slightly
longer than the mean delay for parenchyma. How-
ever, given the variability of the delays, these differ-
ences were not consistently significant (t test, P , 0.01)
for all subjects and threshold criteria. Moreover, in all
three subjects, the variance of the delay distributions
showed no consistent difference between the vascular
and parenchymal pools.

Because the threshold criteria for classifying voxels
as blood vessels were arbitrary, we examined the de-
lay differences across a wide range of criteria. Figure
5B shows the difference in mean delay over a range of
the intensity threshold criterion It (dark line). The
delay difference tended to increase as the criterion for
identifying blood vessels (It) became more stringent.
In two out of three subjects, this trend was statistically
significant (P , 0.01) [Hogg and Ledolter, 1987]. We
also examined this trend over the secondary criterion,
the overlap threshold (Ot), and found a similar trend
for values of Ot ranging from 0.01% to 50% (thin lines).
Overall, the delay differences varied significantly
across subjects and threshold criteria. So, to estimate
the maximum possible delay difference between
blood vessels and parenchyma, we selected the opti-
mal criteria separately for each subject. The resulting
maximum delay differences (asterisks) of 1.76, 2.37,
and 0.67 sec were significant (t test, P , 0.01) for each
of the three subjects respectively.

In the literature [Lai et al., 1993; Menon et al., 1993,
1998; Ogawa et al., 1993; Lee et al., 1995], an alternate
technique for identifying blood vessels has been pro-
posed whereby blood vessels are purported to exhibit
large normalized signal change (Sn). We used this
alternate to the 2D-TOF technique to obtain another
estimate of the delay difference between blood vessels
and parenchyma. Figure 6 shows scatter plots of delay
versus normalized signal change (Sn) from the two
most disparate subjects. The horizontal line separating
the voxels into high (Hi) and low (Lo) Sn was selected
to maximize the difference in mean delay between the
high and low pools. The resulting mean delays for
each pool are indicated by the respective markers on
the abscissa. For three subjects, the maximal signifi-
cant (t test, P , 0.01) difference in mean delay between
voxels with high and low Sn was 1.43 sec (range:
0.81–2.17 sec). The cases in Figure 6 represent the
extremes of this range. Note that these delay differ-
ences were consistent with results from our 2D-TOF
analysis. Also note that there was no criterion using
this technique for which the delay distributions did
not completely overlap.

Response delay variability within voxels

One source of variation in response delay across a
sample of voxels may be fixed differences in re-
sponse from one brain site to another (sacross

2 ). How-
ever, another source of delay variability can be ran-
dom, or even systematic, changes in response delay
over time. Consequently, we performed an analysis
of the within voxel variance for a total of 41 re-
peated scans from two subjects (ZS, 6 and 20 scans;
KR, 15 scans) with a stimulus cycle of 40 sec. The
mean within-voxel variance, swithin

2 , was 1.44 sec2

(range: 1.28 –1.60).

PART II: SIMULATION METHODS

For any given voxel, the time course of the BOLD
signal can be attributed to both stimulus-driven (Stim)
and nonstimulus factors. Stimulus-driven changes are
caused by, or correlated with, the presentation of the
stimulus. In general the stimulus-related responses
may vary from one presentation to the next (s(Stim,time)

2 )
and from location to location within the brain
(s(Stim,space)

2 ). Neither of these sources of variance can
be measured directly because they are always com-
bined with variance as a result of noise. fMRI noise
includes nonstimulus changes caused by a variety of
factors including respiration, heart beat, thermal

TABLE I. Mean and variance of fMRI response delay

Stimulus cycle (TON-OFF)

28 sec 40 sec 64 sec

A- Mean delay (sec) 8.50 8.00 9.27

B- Delay variance (sec2)

Across voxels (sacross
2 ) 2.53 4.36 23.46

Within voxels (swithin
2 ) — 1.44 —

FMRI noise (sFMRI noise
2 ) 0.54 1.45 4.25

Stimulus, time (s(Stim,time)
2 ) — 0 —

Stimulus, space (s(Stim,space)
2 ) 1.99 2.91 19.21

A- Mean delay of the FMRI response at three stimulus cycle dura-
tions. B- Factors contributing to the variance in the delay of the
FMRI response. sacross

2 , swithin
2 , sFMRI noise

2 were measured using
empirical FMRI data. s(Stim,time)

2 and s(Stim,space)
2 were inferred using

equations 4 and 5 in the text.
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noise, and additional fluctuations that have unidenti-
fied physiological origins [Weisskoff et al., 1993;
Biswal et al., 1995, 1996].

Figure 7 summarizes the sources of variance in the
empirical estimates of response delay. In Part I, we
described empirical estimates of the delay variance
across a population of voxels, sacross

2 , and for repeated
measures of the same voxels, swithin

2 . In this section,
we estimate the contribution of fMRI noise to the
empirical estimates of delay variability. The latter
component (sfMRI noise

2 ) depends on the degree to
which fMRI noise encroaches on the bandwidth of the
stimulus-induced fMRI response. If we can indepen-
dently estimate the variance caused by fMRI noise, it
should be possible to estimate the variance associated
with the response to the stimulus itself.

Equations 4 and 5 formalize the preceding notions:

swithin
2 5 s~Stim,time!

2 1 sfMRI noise
2 (4)

sacross
2 5 s~Stim,space!

2 1 s~Stim,time!
2 1 sfMRI noise

2 (5)

where:

s~Stim,time!
2 is the delay variance associated with

changes in the response to the
stimulus from one presentation to
the next.

sfMRI noise
2 is the delay variance caused by fMRI

noise.
s~Stim,space!

2 is the delay variance due to fixed
differences in the stimulus-driven
response from one brain location
~voxel! to the next.

Figure 4.
Two-dimensional (2D) flat maps of occipital cortex showing spatial
distribution of response delays represented by circular pseudo-
color code indicated at bottom. Each map shows the delay pattern
for checkered annuli of different mean radii (3°, 9°, and 24°).
Dotted line marks edges of the cut made in 3D tessellated surface
to permit flattening. The asterisk marks the location of the occip-
ital pole on the 3D and 2D surfaces. The 1 and 2 symbols mark

the cortical surface superior and inferior to the anterior tip of the
lateral cut. Yellows and reds represent delays for positive fMRI
responses, blues and greens represent delays for negative fMRI
responses. Calc. S. 5 calcarine sulcus; Col. S. 5 collateral sulcus;
P.O.S 5 parieto occipital sulcus; L.O.G 5 lateral occipital gyrus;
Prec. 5 Precuneus.
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In words, the within-voxel delay variance, swithin
2

reflects moment-to-moment variations in the response
to the stimulus plus fMRI noise. However, for a pop-
ulation of different voxels, the delay variance, sacross

2 ,
also reflects fixed differences in response from one
brain location to another. Strictly speaking, these
equations will be valid only if the delays caused by the
stimulus-driven response and fMRI noise are indepen-
dent random variables (implying zero covariance)
[Hogg et al., 1987]. Lacking evidence to the contrary,
we assume here that this is true.

In Part I, swithin
2 and sacross

2 were estimated using
empirical fMRI data. By estimating sfMRI noise

2 , we can
estimate s(Stim,space)

2 and s(Stim,time)
2 using Equations 4

and 5. To do this we need to estimate the characteris-
tics of the fMRI noise. Unfortunately, common statis-
tical models are not appropriate for describing fMRI
noise, as the noise has been shown to be spectrally
complex and variable from site to site within the brain

[Weisskoff et al., 1993; Biswal et al., 1996]. Conse-
quently, in the next section, we use empirical esti-
mates of fMRI noise to create simulated fMRI re-
sponses and estimate the delay variability caused by
fMRI noise.

The simulated fMRI responses consisted of an ideal
sinusoidal response of known amplitude added to
empirically measured fMRI noise. In a simulation,
fMRI responses were created using multiple samples
of fMRI noise time series recorded during “fixation
only” (control) scans and they were obtained only
from voxels that, subsequently, would be activated by
the visual stimulus. The sinusoid representing the
ideal response had a constant delay (phase), and so,
contributed nothing to the variance of the simulated
response’s delay estimate. We assumed that the dis-
tribution of fMRI noise during stimulus presentation
was the same as during the fixation-only condition
and provide some supporting evidence below. Note

Figure 5.
(A) Normalized delay distributions for blood vessels (black) and
parenchyma (gray) classified according to 2D-TOF data. Ten per-
cent of activated voxels were mapped to blood vessels; however,
the histograms were normalized to facilitate the comparison of the
two distributions. Note that the variance of the vascular and
parenchymal distributions showed no statistical difference. (B)
Mean delay difference between voxels mapped to vessels and
parenchyma vs. the intensity threshold criterion, It, for vessel
segmentation. The thin lines show the delay differences at four

different overlap thresholds (Ot) and the thick trace is the average
of all the thin traces (see Methods for details). Note in cases TN
and TO that the delay difference increased (P , 0.01) as It, the
criterion for identifying vessels, became stricter. Asterisks mark
the largest differences in mean delay of 1.76 and 2.37 and 0.67 sec
for cases TN, TO, and TM, respectively. Note the difference in the
Y axis between the three graphs. Arrows indicate conditions (It 5
1, Ot 5 10%) for which distributions in (A) were obtained.
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that we did not assume the distribution of fMRI noise
to be Gaussian, white, or spatially independent.

The mathematical approach for creating the simulated
fMRI responses was as follows. For voxel i, let Vc(i)
represent a sample of the noise time series. Let Va(i)
represent the corresponding response during stimulus
activation. To form a simulated response, Vs(i), a sinu-
soid, s(i) representing an ideal stimulus-induced re-
sponse was added to the noise sample Vc(i) such that:

Vs~i! 5 Vc~i! 1 s~i! (6)

where: s~i! 5 a~i!sin~2pfc z t 1 f!
fc 5 stimulus cycle frequency ~1/28,

1/40, 1/64 Hz
f 5 true, constant response phase

~delay!
a~i! 5 the amplitude of s~i!, such that

the signal-to-noise ratio ~SNR! of Vs~i!
is equal to that of Va~i!.

The signal-to-noise ratio is defined as:

Figure 6.
Scatter plots of normalized fMRI signal change (Sn) vs. delay for the
two most disparate subjects (positive responses only, stimulus
cycle duration 5 40 sec). The normalized signal change is ex-
pressed as a percentage of the baseline fMRI signal. For cases OW
and OU, data were combined across 20 and 15 scan repetitions,

respectively. Horizontal lines show the threshold criterion that
resulted in the largest difference in mean delay for high (Hi) vs. low
(Lo) Sn responses. Markers on the abscissa indicate mean delays
for each pool.

Figure 7.
Schematic of the contribution of fMRI noise (sfMRI noise

2 ) and stim-
ulus-driven response variability to the empirical estimates of delay
variance across voxels, sacross

2 , and within voxels, swithin
2 . The

stimulus-driven variability is broken down into variability across
repeated measures at the same voxel location s(Stim,time)

2 and
variability across voxels s(Stim,space)

2 .
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SNR 5
P~fc!O

j

P~fj! 2 P~fc!
(7)

where: P(fj) 5 spectral power at frequency fj.
The numerator represents the power in the signal at

stimulus cycling frequency (fc). The denominator rep-
resents the total power in the signal at all frequencies
other than fc.

In each simulation, sfMRI noise
2 was calculated from

the delay estimates of the simulated fMRI responses.
The number of simulated responses was equal to the
number of voxels activated in the corresponding ac-
tive scan (371 on average). The methods used to esti-
mate the delays were exactly the same as those used in
Part I to analyze the empirical data. Simulations were
performed using a total of 10 control scans from three
subjects.

PART II: SIMULATION RESULTS

Response delay variability resulting from
fMRI noise

Figure 8 shows the distribution of response delays
obtained from a set of simulated fMRI time series
(light gray) and from empirical fMRI time series (dark
gray) pooled across six scan repetitions. Across all

subjects, the response delay variance for the simulated
data was 1.45 sec2 (s 5 1.20 sec; range: 0.96–2.0)
whereas the variance for the empirical data was 4.36
sec2 (s 5 2.09 sec; range: 1.26–2.88). Thus, 33% of
delay variance (57% of standard deviation) was ac-
counted for by the presence of fMRI noise. Using
white noise in lieu of empirically measured fMRI
noise significantly reduced the delay variance (vari-
ance ratio F test, P , 0.001). On average, the variance
was reduced from 1.45 to 0.77 sec2, thereby underes-
timating the component of variance due to noise by
nearly a factor of two.

Figure 9 shows how the delay variance changes as a
function of the cross-correlation coefficient, r, used to
identify statistically valid responses. Data are shown
for the empirical fMRI data versus the simulated fMRI
data based on sampled noise. For comparison, simu-
lated data based on white noise are also shown. Using
a variance ratio F test, we found that the variance
was significantly larger for the empirical fMRI time
series than for either of the two simulated time series
(P , 0.01). At very high values of r (as signal-to-noise
became large), the variance for all three data sets
tended toward zero. At lower values of r(0.5–0.7), the
delay variance was highest for the empirical data but
was also significantly elevated for the simulated data
based on fMRI noise. Note that for r , 0.85, the

Figure 8.
Response-delay distributions obtained from empirical fMRI data
(gray) and simulated data based on fMRI noise (black). The data
were pooled from one subject, across six scan repetitions with
stimulus cycle duration of 40 sec. The black and gray horizontal
bars are graphical representations of the delay standard deviation
for simulated and empirical data, respectively.

Figure 9.
Variance of the response delay as a function of cross-correlation
coefficient (a measure of signal-to-noise ratio) for fMRI data (dark
gray, circles), simulated data using fMRI noise (light gray, squares),
and simulated data based on white noise (black, diamonds). The
stars indicate significant differences in variance between white
noise and fMRI noise (F-ratio test, P , 0.01). The data were
pooled across three subjects.
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variance resulting from fMRI noise was significantly
larger (variance ratio F test, P , 0.01) than for white
noise. At r between 0.5 and 0.55, the variance resulting
from fMRI noise was 3.4 times larger than that from
white noise. (r values of approximately 0.5 are typical
criteria for acceptance of valid responses.)

The simulation was also carried out for stimuli hav-
ing cycles (TON-OFF) of 28 and 64 seconds. The result-
ing delay variances differed significantly (variance ra-
tio F test, P , 0.01) from the variances at TON-OFF of 40
sec and were on average 0.54 sec2 (s 5 0.73 sec) and
4.25 sec2 (s 5 2.06 sec), respectively. Thus, delay
variance induced by fMRI noise was proportional to
(TON-OFF)2.5.

Stationarity of fMRI noise

The estimated contribution of fMRI noise to the
delay variance is valid as long as the spectral content
of the noise is stationary. In other words, the spectral
content of noise in the control state must not change in
the presence of cortical activation. Figure 10A illus-
trates the differences in average spectral power be-
tween active voxels (dashed) and the same voxels
during the fixation only control condition (solid). The
shaded segments highlight bandwidths at which the
difference in spectral power was statistically signifi-
cant (P , 0.001) [Kay, 1988]. Note that the largest
differences in spectral power were at the stimulus
cycle frequency (1/40 5 0.025 Hz) and its harmonics
(0.05, 0.075, and 0.1). (A separate simulation showed
that differences in spectral power adjacent to the stim-

ulus frequency were spectral leakage artifacts inherent
in the power spectrum estimation.) Similar results
were obtained using different stimulation frequencies
(1/64 and 1/28 Hz).

Note that during activation there is virtually no
significant change in power other than at the stimulus
fundamental frequency and its harmonics. Thus, acti-
vation does not appear to affect the fMRI signal in any
nonspecific way, thereby lending some credence to the
assumption of noise stationarity during activation.
However, this does not necessarily preclude a selec-
tive mechanism that alters the noise only within the
frequency bands occupied by the stimulus.

A second concern with respect to stationarity is
whether the statistics of the noise are constant across
repeated samples. Since respiration and aliased heart
rate contribute significantly to the noise, there is rea-
son to expect that the noise may change across sam-
ples. Figure 10B illustrates that successive noise sam-
ples can vary significantly. For example, at a stimulus
period of 64 sec, the noise differed by 50% from one
sample to the next. Because such spectral changes will
alter the delay variability, the effects of fMRI noise
should be assessed across multiple control scans.

Note that for different stimulus cycle durations, the
noise power can vary significantly. In Figure 10B,
arrows mark the noise components that would con-
tribute to the variance of the stimulus-evoked re-
sponses for cycle durations of 64, 40, and 28 sec,
respectively. Note the significant increase in noise
power with increasing cycle duration.

Figure 10.
(A): Average spectral power during active stimulus/task with 40-
sec cycle (dashed) and during fixation only control (solid). (B):
Example of average spectral power for two control (noise) scans
obtained at different times in same experiment. Data from control
scans such as these was used to estimate the spectral power of
fMRI noise. Gray shading highlights bandwidths with significant

spectral power differences (P , 0.001) between the active task
and fixation in (A) and between the two fixation scans in (B).
Vertical arrows in (B) indicate noise power at same frequencies
used for visual stimulus presentation. Note marked increase in
noise power as stimulus frequency decreases. Also note different
ordinate scales in (A) and (B).
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Contributions of stimulus-driven responses

The components of delay variance are summarized
in Table IB for the three different stimulus cycle du-
rations. For stimuli with a 40-sec cycle, the measured
within-voxel variance, swithin

2 , and estimated noise
variance, sfMRI noise

2 , were used with Equation 4 to
calculate the contribution due to changes in the stim-
ulus driven response across time, s(Stim,time)

2 . This con-
tribution was not significantly different from zero be-
cause swithin

2 and sfMRI noise
2 were found to be nearly

identical (1.44 vs. 1.45 sec2). (Note that the estimates
for sfMRI noise

2 and swithin
2 were obtained from separate

data sets.) Given the measurement error in the esti-
mates of swithin

2 and sfMRI noise
2 , the value of s(Stim,time)

2

could have been as high as 0.64 sec2 without being
statistically different from zero.

Finally, using Equation 5 with s(Stim,time)
2 equal to 0,

s(Stim,space)
2 , was found to be 1.99, 2.91, and 19.21 sec2

for stimulus cycles of 28, 40, and 64 sec, respectively.

DISCUSSION

In this study, we implemented an efficient algo-
rithm for estimating fMRI response delays using the
Hilbert transform. We then used this algorithm to
describe the statistical distribution of delays for fMRI
responses evoked in visual cortex by a cyclic pattern of
visual stimulation. The mean delay for the activating
responses was nearly 8.5 sec and varied little with the
duration of the stimulus cycle period. In all 87 data
sets analyzed, both positive and negative responses
were observed.

Variability in empirical estimates of
response delays

The estimated variance in response delay across a
population of voxels, sacross

2 , was 4.36 sec2. This was
three times larger than the variance within voxels,
swithin

2 . These results indicate that variability in the
response delay throughout the brain is in large part
because of fixed anatomical and/or physiological fac-
tors. Consequently, one might have expected the pat-
tern of delays across the cortex to reflect known pat-
terns of neural connectivity or synaptic delay.
However, this did not appear to be the case.

One puzzling feature of the response delays was
that the variance, sacross

2 , increased as the stimulus
cycle lengthened, even though the mean delay re-
mained unchanged (Table IA). This appears to be at
least partly the result of the unique characteristics of
fMRI noise. The power spectrum of fMRI noise is not

uniform like white noise. Rather, the power of fMRI
noise increases at lower temporal frequencies, espe-
cially over the range of stimulus frequencies (or cycle
durations) used in this study, and in many published
studies. The effect of noise added to the fMRI response
is to introduce variance in the phase spectrum, that is,
to add to the delay variability. For a sinusoidal signal,
delay (d) and phase (f) at a frequency F are related by
d 5 f/(2pF). Consequently, we expected that the de-
lay variance would be related to noise as a function of
1/Fb. For white noise, b 5 2 as phase variability is
constant at all frequencies. However, given the in-
crease in fMRI noise power with decreasing frequen-
cies, we expected b to be larger than 2. Indeed, from
our simulation data, the average empirical estimate of
b was 2.5. This dependence of the delay variance on
stimulus cycle was to be expected given the properties
of fMRI noise. Moreover, it suggests that more accu-
rate delay estimates can be obtained by presenting
stimuli and tasks in a block design with the shortest
viable cycle duration.

Variability of stimulus-induced response delays

After accounting for the contribution of fMRI noise,
we found that, on average, the stimulus-induced delay
variance over time, s(Stim,time)

2 , was not measurably
different from zero. In other words, once the contri-
bution of fMRI noise was factored out, the fMRI re-
sponse delay was found to be constant across repeated
stimulus presentations. Nevertheless, there must have
been some variability in the underlying neural events.
Given the range of variability in our estimates of swithin

2

and sfMRI noise
2 , this component could not have been

larger than 0.64 sec2. Indeed, available evidence sug-
gests that s(Stim,time)

2 , estimated from average fMRI
responses, is on the order of 0.07 sec2 and as low as
0.005 sec2 [Menon et al., 1998; Saad et al., 1999a,
1999b].

Although the trend toward increasing delay vari-
ance observed in our empirical measurements of
sacross

2 was partly accounted for by the fMRI noise,
there remained an additional component, s(Stim,space)

2 ,
that also increased with cycle duration (Table IB). This
remaining component was caused by the presence of
voxels activated at longer, but not shorter, stimulus
cycle durations. Such voxels typically had longer de-
lays and lower signal-to-noise ratios than voxels acti-
vated by all cycle durations. Consequently, the addi-
tion of these extra voxels to the distribution resulted in
the increased variance. Thus, the spatial variance ap-
peared to be somewhat higher for longer stimulus
cycle durations.
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Stationarity assumptions

The algorithm we used to estimate response delays
assumes that the fMRI response to a stimulus is in-
variant both in time and space, except for a fixed time
delay between stimulus and response. Theoretically,
portions of the fMRI response such as the onset should
suffice for estimating the true response delay at a
certain voxel. In practice, the entire fMRI response
time series is used to reduce the variability introduced
by noise of the estimated response delays [Saad et al.,
1999b]. However, use of the entire fMRI response
could result in increased delay variability if the tem-
poral and spatial stationarity condition is violated.
The source of such variability could be neuronal, cog-
nitive, or hemodynamic in origin. For example, fluc-
tuations in the subject’s attention during the ON pe-
riod of a stimulus would introduce nonstationarity in
the response. In a recent publication, Menon and col-
leagues [1998] remarked that only the onset of the
fMRI response to a stimulus is stationary across space
and time and that the remainder of the time series is
more variable. However, in a separate analysis [Saad
et al., 1999b] we found that the use of the entire fMRI
response resulted in significantly lower variance in
estimated delay than the use of the rising phase as
suggested Menon and colleagues [1998].

Response delays for vessels vs. parenchyma

We have shown that most of the variability in re-
sponse delays occurs across spatial locations. In the
literature [Lai et al., 1993; Lee et al., 1995], such spatial
variability is attributed to large veins that drain acti-
vated areas. Lee and colleagues [1995] found that
draining vessels can produce fMRI responses with
delays between 8 and 14 sec. This is in contrast to the
4–8-sec delay they observed for parenchymal tissue.
In part, our results and those by Kruggel and von
Cramon [1999b] were consistent with these observa-
tions. Responses in blood vessels identified by 2D-
TOF imaging or by large signal change were delayed
with respect to responses in parenchyma. However, in
our data, the delay difference was on the order of 1–2
sec and not longer. This is in excellent agreement with
the result reported by Kruggel and von Cramon
[1999b] who examined response delays differences be-
tween voxels in the vicinity of the great cerebral vein
and nine other cortical ROIs during a language pro-
cessing task. Across all ROIs, they found delay differ-
ences ranging between 0.45 and 3.27 sec with a mean
of 1.6 sec. Overall, we found a large overlap of delays
for the parenchyma and blood vessels. Our data do

not support the contention that all voxels with large
delays are mapped to large draining veins. Hence, it
may not be valid to assume that all voxels with long
delays are artifactual. The only caveat to this conclu-
sion is that our methods for classifying voxels as blood
vessels or parenchyma may not be perfect. Conse-
quently, we cannot entirely reject the possibility that a
portion of the overlap in delay is the result of misclas-
sification. However, it is important to note that we did
not bias our analysis by manually selecting a popula-
tion of blood vessels and measuring their response
delays. Rather we obtained an unbiased separation of
the two pools by using a continuum of thresholds and
seeking maximal delay differences between the two
pools.

Because our data suggests that the spatial variability
in response delay was only partly the result of venous
drainage, it follows that the parenchyma must contrib-
ute significantly to this variance. This conclusion is
bolstered by results from Moskalenko and colleagues
[1996a] who used the hydrogen clearance method to
study delays in rat whisker barrel cortex. This method
is selectively sensitive to local parenchymal blood
flow [Moskalenko et al., 1996b] and yielded a range of
approximately 6 sec in response delays. Moreover,
Moskalenko obtained a delay variance of 2.56 sec2

(s 5 1.6 sec), which is in close agreement with our
own measurements.

Mechanisms resulting in negative fMRI responses

The physiological origins of negative fMRI re-
sponses are poorly understood. Examination of these
signals relative to a prestimulus baseline showed that
they were truly suppressive, that is, the signal fell
below baseline during stimulus presentation and then
returned to baseline during the control period. Thus,
negative responses were not the result of activating
responses that were delayed by half the stimulus cy-
cle. It was also clear that both activating and suppres-
sive signals occurred within cortex associated with a
single modality (vision). Haxby had suggested that
they might primarily occur as an interaction between
sensory modalities [Haxby et al., 1994].

Several mechanisms might contribute to the occur-
rence of negative responses. These include frequency
shift artifacts, local fixed differences in physiological
properties, venous drainage delays, attentional mod-
ulation, neuronal deactivation or inhibition, and blood
flow redistribution. Our data allow us to reject the first
four alternatives as the primary basis for negative
responses. Frequency shift artifacts cause negative
fMRI responses only in voxels that are immediately
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adjacent to voxels with strong activating responses
[Jesmanowicz et al., 1993]. Our delay maps clearly
show negative responses in large homogenous
patches containing many voxels that were not adjacent
to positive voxels. Many voxels within the visual cor-
tex were suppressed by one stimulus but activated by
another. Consequently, these negative responses are
not associated with peculiar, fixed physiological dif-
ferences at certain brain sites [Shulman et al., 1997],
nor are they primarily associated with delayed
“downstream” signals from draining veins. One could
imagine that attentional activation [Kastner et al.,
1998; Tootell et al., 1998; Brefczyinski and DeYoe,
1999; Somers et al., 1999] directed to the fixation point
during the stimulus OFF periods might have created a
signal that was apparently phase shifted by half the
stimulus cycle or that was suppressive at nonattended
sites. However, voxels with negative responses were
found even when subjects were required to constantly
attend to the fixation point throughout the sequential
ON-OFF presentation of the checkered annulus. Given
these considerations, two alternatives remain: either
the negative responses reflect true neural events
within and across sensory modalities or they reflect
blood flow redistribution whereby increased blood
flow in areas of intense activation causes reduced flow
in neighboring areas [Seitz et al., 1992; Cox et al., 1993;
Haxby et al., 1994; Lee et al., 1995; Moskalenko et al.,
1996a; Woolsey et al., 1996; Shulman et al., 1997]. The
available data do not allow us to reject either alterna-
tive.
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APPENDIX: ESTIMATION OF RESPONSE
DELAYS USING THE HILBERT TRANSFORM

The Hilbert Transform H[s(t)] of a real valued func-
tion s(t) is the convolution of s(t) with 1/pt. The
transform leaves the amplitude spectrum of s(t) un-
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changed but changes the positive frequency phase
spectrum by p/2 and the negative frequency phase
spectrum by 2p/2 [Bendat et al., 1993]. The cross-
correlation function Rrs(t), describes the correlation
between r(t) and s(t 1 t) for a range of a time delay (t)
between the two signals. It can be shown that when t
is equal to the response delay Dt, the cross-correlation
function Rrs(t) is maximal and H[Rrs(t)] is equal to
zero. The same is true for the cross-correlation coeffi-
cient function r(t), which is a normalized form of
Rrs(t). Finding the point of zero crossing of H[r(t)] is
computationally easier than finding the maximum of
r(t). The computation of r(t) and H[r(t)] in the time
domain are computationally expensive since they in-
volve convolutions. However, by making use of the
properties of analytic signals (the analytic signal Zs(t)

of s(t) is given by: Zs(t) 5 s(t) 1 jH[s(t)]) and their
corresponding cross-power spectra, we can compute
r(t) and H[r(t)] via Fast Fourier Transform operations
as outlined in Figure 11 and below.

A. Compute the Fast Fourier Transform s(f) and r(f)
of the fMRI response s(t) and the reference signal
r(t), respectively.

B. Use s(f) and r(f) to compute the cross-power
spectrum Srs(f) of s(t) and r(t) and their autospec-
tra Srr(f) and Sss(f).

C. Compute the inverse Fast Fourier Transform of
Srr(f) and Sss(f) to obtain the autocorrelation
functions Rss(t) and Rrr(t) of s(t) and r(t), respec-
tively.

D. Multiply Srs(f) by 2 for positive frequencies and

Figure 11.
Outline of computations used to esti-
mate response delay (Dt) and cross-
correlation coefficient rrs(Dt) between
the fMRI signal s(t) and the reference
signal r(t) (see appendix for details).
The graph on the bottom left shows the
cross-correlation function Rrs(t) and
its Hilbert transform H[Rrs(t)]. The
graph portion for t between 0 and 4 sec
is enlarged on the right. ^ 5 Fast Fou-
rier Transform; i^ 5 inverse ^; * 5
complex conjugate; R..(t) 5 correlation
function; S..(f) 5 power spectrum.
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0 for negative frequencies. The inverse Fast Fou-
rier Transform of the modified Srs(f) is a complex
series having the cross-correlation function
Rrs(t) and its Hilbert Transform H[Rrs(t)] as its
real and imaginary parts, respectively.

E. Interpolate using H[Rrs(t)] around the first 0
crossing to estimate the response delay Dt such
that H[Rrs(Dt)] 5 0. Interpolate using Rrs(t)
around Dt to estimate Rrs(Dt).

F. Estimate the cross-correlation coefficient r(Dt)

using Equation 3 in the text and Dt obtained
in E.

The cross-correlation coefficient, which is used to
determine if a voxel is activated, is maximal at the
time delay between the reference and fMRI time se-
ries. The algorithm was implemented as a plug-in for
MCW-AFNI software package [Cox et al., 1997] and is
freely available by request from the authors.
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