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Direct Reconstruction of Non-Cartesian k-Space Data
Using a Nonuniform Fast Fourier Transform

Gordon E. Sarty,”” Raogiong Bennett,” and Robert W. Cox?

An algorithm of Dutt and Rokhlin (SIAM J Sci Comput 1993;14:
1368-1383) for the computation of a fast Fourier transform
(FFT) of nonuniformly-spaced data samples has been extended
to two dimensions for application to MRl image reconstruction.
The 2D nonuniform or generalized FFT (GFFT) was applied to
the reconstruction of simulated MRI data collected on radially
oriented sinusoidal excursions in k-space (ROSE) and spiral
k-space trajectories. The GFFT was compared to conventional
Kaiser-Bessel kernel convolution regridding reconstruction in
terms of image reconstruction quality and speed of computa-
tion. Images reconstructed with the GFFT were similar in quality
to the Kaiser-Bessel kernel reconstructions for 2562 pixel image
reconstructions, and were more accurate for smaller 642 pixel
image reconstructions. Close inspection of the GFFT reveals it
to be equivalent to a convolution regridding method with a
Gaussian kernel. The Gaussian kernel had been dismissed in
earlier literature as nonoptimal compared to the Kaiser-Bessel
kernel, but a theorem for the GFFT, bounding the approximation
error, and the results of the numerical experiments presented
here show that this dismissal was based on a nonoptimal
selection of Gaussian function. Magn Reson Med 45:908-915,
2001. © 2001 Wiley-Liss, Inc.
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From a mathematical point of view, the most straightfor-
ward approach for the reconstruction of MRI data acquired
on non-Cartesian trajectories in k-space, such as spiral
(1-3), rosette (4,5) or ROSE (6) is to reconstruct directly via
a Fourier summation (7,8). However, the computational
complexity of the direct approach is usually an order of
magnitude, or more, greater than an approach that uses the
efficient fast Fourier transform (FFT) (9,10). Since the FFT
requires that data be sampled on a uniform Cartesian grid
in k-space, a popular method for the reconstruction of
non-Cartesian sampled MRI data has been to regrid the
data onto a Cartesian grid via a convolution regridding
approach.

Jackson et al. (11) have argued that the Kaiser-Bessel
function provides an optimal convolution kernel for con-
volution regridding reconstruction. In this work, we ex-
tend a method of Dutt and Rokhlin (12) for the computa-
tion of a generalized FFT (GFFT) for nonuniformly-spaced
data to two dimensions. Given that Dutt and Rokhlin’s
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approach is being considered for MRI reconstruction by
other investigators (13), it is important to know the math-
ematical difference between the GFFT and convolution
regridding. We show that the GFFT is equivalent to con-
volution regridding reconstruction with a Gaussian kernel,
and that the new method provides a more accurate recon-
struction in the same amount of time as the Kaiser-Bessel
kernel-based reconstruction, especially for the smaller
64 X 64 pixel images that are frequently used for making
functional MRI (fMRI) activation maps.

The work is organized as follows. In the Theory section,
a quick review of Fourier transform image reconstruction
is given, introducing the direct sum that needs to be effi-
ciently computed. The method of Dutt and Rokhlin for
computing 1D nonuniformly-spaced FFTs is reviewed
next, followed by a description of the extension of the
algorithm to two dimensions for MRI data reconstruction.
In the Methods section, numerical experiments designed
to compare the GFFT reconstruction to Kaiser-Bessel ker-
nel convolution regridding reconstruction are described.
The results of numerical experiments, including a rough
timing of the algorithms, are described in the Results sec-
tion. Finally, the meaning of the numerical experiments is
covered in the Discussion section.

THEORY

The usual MRI signal model used for the development of
Fourier transform image reconstruction algorithms is
given by

S(t, B) = ff p(x, y)e 2B KB gy dy (1]
ol

where o is the region of the selected slice within the
sensitive volume of the RF receiver coil, p represents the
slice image of interest, and (x, y) is a point in that slice.
The position (K (t, B), K, (t, B)) of the data point S(¢, ) in
k-space at a given point in time, t, and for a given acqui-
sition interleaf, B, is proportional to the time integral of the
applied magnetic gradient fields (14,15), G,(t, B), and
Gy(t, B), as given by

K., B)—;Tf Gy, B) dr, [2]
Kt B) = 5 f Gy(r, B) dr

where vy is the gyromagnetic ratio.
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If the k-space trajectory is nice enough (at least once
continuously differentiable along the trajectory and con-
tinuously differentially interleavable, for example), the pa-
rameters t and B, which are naturally associated with the
trajectory, can be used to form local coordinate systems on
the k-plane called natural k-plane coordinate systems (8).
In that case, the ideal, spatial frequency band-limited,
image reconstruction is given by the positive operator, P,,
whose action is defined as

Br tr
Pbp(X, Y) — f f S(t, B)ezﬂi(xKx(t,BHyKy(t,B))U(t’ B)‘ dt dB
Br 1
(3]

where [B,, Bzl and [t,, t,] are the intervals on which B and
t are defined, and |J| is the absolute value of the determi-
nant of the Jacobian of the transformation from the Carte-
sian k-plane coordinates to the natural k-plane coordi-
nates. In practice, the MRI signal will be sampled at dis-
crete points t,, and B,. A direct Fourier reconstruction (8)
of the sampled data may then be obtained from a Riemann
sum approximation of Eq. [3], ignoring the irrelevant con-
stant AtAB, as given by the positive operator P whose
action is given by

Pp(x, y) — E z S(t, By 2Kt B9+ YKt Bs)]

s r

J(t, B)I. [4]

More generally, if (t, B) do not define a natural k-plane
coordinate system so that the Jacobian cannot be defined,
the weighted correlation method (7) may be used to obtain
a Riemann sum approximation of the integral

Pp(x, y) = Jf p(k,, ky)ez'ni(xkx-f»ykv) dk, dk, (5]

where % is a set containing the k-space data samples and
p is the integral Fourier transform of p. Explicitly, the
weighted correlation reconstruction is given by

Pp(x, 1) = X 3 Sk, Bet e Kt (e, p) (o)

s r

where W is a weight that should minimize the difference
between Egs. [5] and [6]. A popular choice for W in that
respect are the Voronoi areas associated with the k-space
sample points (16). The Voronoi area associated with a
k-space point is the area of the set whose points are closer
to the given point than to all the other k-space sample
points.

With conventionally acquired MRI data, the sample
points (K (t,, Bs), Ky(t,, B,)) lie on a Cartesian grid (rAk,,
sAk,) and |]| = 1 so that Eq. [4] reduces to

Pp(x, ) = 2, 2 S(t,, B,)emiorhcysi, 7]

s r

Typically, one will be interested in an N X N pixel image
so that Eq. [7] needs to be computed N? times. Thus Eq. [7]
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will require O((N?)?) multiplications and additions for the
direct computation of Pp at N* points. By choosing Ax =
1/(NAk,) and Ay = 1/(NAky), the FFT algorithm may be
used to compute the N? values of the image at the points
(uAx, vAy), u, v € [—-N/2, N/2], with O(N*log N)
arithmetic operations. The direct computation of Eq. [7]
requires on the order of hours of computational time for a
typical 256 reconstruction, while the evaluation of Eq. [7]
using the FFT is possible in a fraction of a second on
modern computers. In the following section, a GFFT algo-
rithm capable of computing the more general sum of Eq.
[6] with O((m(e) N log m(e) N + m(e) N log(1/€))?* arith-
metic operations, where € is the desired precision of the
computation and m is an “oversampling” parameter, is

described.

1D GGFT
At the heart of the GFFT is the need to compute

M
fu= 2 cue [8]
k=0
for u = 0,..., N, where f,, € C, the set of complex

numbers, o, € C, w, € [-N/2, N/2] and x,, € [~ 7],
as a generalization of the well-known discrete Fourier
transform (DFT) described by the equation

N-1
f“ — E akeZﬂiuk/N (9]
k=0
foru =0, ..., N — 1. Using approximation theory, Dutt
and Rokhlin (12) showed that the sequence {e’**|k =
0, ..., M} can be approximated by the sequence
ql2
eb(x/m)z E ijei(ukﬂ)X/HI k= 0’ e, M
J=-9/2

with precision €, where m, b, and g are parameters chosen
to meet the € accuracy requirements, w, = [mo,] is the
closet integer to mw,, and P;, is defined by the formula

1
2\bm

ij — e*(mwr(uﬁj))z/‘lb [ 1 0]

fork=10,...,Mandj= —q/2, ..., q/2. Specifically,
Dutt and Rokhlin’s (12) Theorem 2.10 states:

Theorem 1 Let b > % o, € R, the set of real numbers,
and let m = 2, q = 4bw be integers. Let p., = [mw,], then
for any x € [—, 7],

q/2
eika _ eb(x/m)z E ljjkei(uk+j)x/m < €(b, m)

j==q/2

= e bm-Vmy 4 4+ 9), [11]
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FIG. 1. k-Space trajectories used for the 64 X 64 image reconstructions: (@) ROSE and (b) spiral. The k-space radius A determines the
resolution, and for our mathematical phantom’s field of view of 0.2 m, the selection of A = 160 cycles/m for the 64 X 64 pixel and A = 640
cycles/m for the 256 X 256 pixel case was appropriate. For the 64 X 64 pixel case we set w = 32 for the ROSE, o = 64 for the spiral, and
the number of samples for both to 8192. For the 256 X 256 pixel case we set v = 128 for the ROSE, w = 256 for the spiral, and the number

of samples to 131,072 for both.

The substitution of e?*/™” SA2 ., Py /DX for
e’ in Eq. [8] leads to a sum that may be computed with
the help of the ordinary FFT in O(mN log mN + mNq)
arithmetic operations. So Theorem 1 says that the DFT of
a nonuniformly sampled set of N data points may be
computed with an ordinary FFT of length mN with a
precision that depends on the selection of m and the
parameter b. While correct, Dutt and Rokhlin have shown
through computational example that the error bound
e(b, m) = e ™ (1~1m") fa1 gverestimates the error ob-
tained in practice, and the choice of m = 2 is sufficient for
most practical applications. The selection of q affects the
length, and hence the time required to compute, the sum
in Eq. [11]. Therefore, the minimum value of g that gives
an acceptable error is desirable. Since b is restricted in the
hypothesis of the theorem to be greater than 0.5, the min-
imum value of g consistent with the hypothesis is ¢ = 8
since the sum in Eq. [11] implies that g be an even integer.

2D GFFT

It will be convenient to re-index the k-space sample points
from the two r and s indices, used in Egs. [4] and [6] to a
single index p so that S(p) = S(t,, B,). Then we can write
Eq. [6] as

M

Pp(x, y) = 2, S(p)W(p)e™Pe™r

p=0

[12]

where (o.(p), o,(p)) = 2m(KJ(t, By), K(t, B,)) and
W(p) = W(t,, B,). When natural k-space coordinates are
defined, we may set W(p) = |J(t,, B:)|- In order to apply

the GFFT as described below, it is necessary that w.(p),

u)y(p) € [—N/2,N/2] and x, y € [—m, w]. So, in practice
it is necessary to scale the physical K, (p) and K,(p) co-
ordinates to lie in the range [—N/4w, N/4mw]. Let By =
[mo(p)l, A, = [mo,(p)], a, = S(p)W(p) and

1
_ —(mox(p)—(up+))2/4b

P"”_zebwemw S j q q
N =T 5
1 2

Q]'p — i e*(lnmy([})*(}\lﬁrj)) /4b p - O, , M

2 b

Y

Then, we may compute as good approximation to Pp of Eq.
[12] the function Pp as given by

Pep(x, y)
M q/2 q/2
— ,b(x*+y?)/a z E E )  ippt)x/2 L i+ j2) Y2
e OLP P]lPQ}zpe € .
p=0 J1=—q/2 ja=—ql2

[13]

To compute the sums of Eq. [13] using the ordinary FFT, a
discrete regular square grid of N X N image points {(x,,,
v} is chosen, and the image reconstruction is computed
as

mN/2 mN/2

2 2 eiuxl,/ZeibyV/ZTﬂb

a=-mN/2 b=-mN/2

Pcp(Xu, yv) — el}(xu2+y‘,2)/4 [14]

where x,, = 2wu/N, y, = 2wv/N, u, v € [-N/2, , N/ 2],
and
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Table 1

RMS and Maximum Absolute Differences With Direct Reconstructions and the Mathematical Phantom

DT-PH KB-PH GFFT-PH KB-DT GFFT-DT

RMS (642 ROSE) 24.5 35.6 35.2 27.8 24.5
Max (642 ROSE) 132 232 212 204 186
RMS (642 spiral) 22.5 33.2 34.0 30.9 22.8
Max (642 spiral) 131 236 215 213 184
RMS (2562 ROSE) 13.4 20.8 20.8 13.9 13.9
Max (2562 ROSE) 138 248 248 221 221
RMS (2562 spiral) 13.6 20.1 20.3 13.8 13.8
Max (2562 spiral) 141 251 250 223 222

The column headings are: DT-PH, direct reconstruction minus original mathematical phantom; KB-PH, Kaiser-Bessel regridding recon-
struction minus original mathematical phantom; GFFT-PH, GFFT reconstruction minus original mathematical phantom; KB-DT, Kaiser-
Bessel regridding reconstruction minus direct reconstruction; GFFT-DT, GFFT reconstruction minus direct reconstruction. The GFFT

reconstructions used g = 10, b = 0.5993.

Tab = E 2

{pjilpptji=a} {p.jal\p+j2=b}

a,P; Qb [15]

Eq. [14] may be computed using a mN X mN ordinary 2D
FFT, which can be efficiently computed with O(mN log
mN)? arithmetic operations. The computation of each sum
in Eq. [15] requires O(mNq) arithmetic operations. Theo-
rem 1 implies that ¢ ~ log(1/€) so that O(mN log mN +
mN log(1/€))? arithmetic operations are required to com-
pute the GFFT. The use of the mN X mN FFT to compute
the sums in Eq. [14] will give values of P;p(x,,, v,) for u
and v outside the interval [—N/2, N/2]. These extra val-
ues are discarded.

MATERIALS AND METHODS

Simulated MRI k-space data were generated on ROSE (Ra-
dially Oriented Sinusoidal Excursions) in k-space and spi-
ral k-space trajectories (see Fig. 1) and reconstructed using
the GFFT and convolution regridding with the following
Kaiser-Bessel convolution kernel:

1
b(ky, ky) = [Z L(B\1 — (ZkX/L)Z)]

X [% (1 — (2ky/L)Z)} [16]
where I, is the zero-order modified Bessel function of the
first kind. Jackson et al.’s (11) optimal values of L = 4 and
B = 12 were used with regridding onto a 2 times “over-
sampled” grid. For each of the ROSE and spiral cases, two
data sets were generated: one with high enough spatial

Table 2

frequencies suitable for the reconstruction of a 64 X
64 pixel image, and the other with high enough spatial
frequencies suitable for the reconstruction of a 256 X
256 pixel image. For comparative purposes, the data were
also reconstructed directly using Eq. [4]. In all reconstruc-
tions, the data were weighted with the natural k-plane
coordinate Jacobian. The simulated signal was computed
from the exact values of the integral Fourier transform of
the Shepp and Logan (17) mathematical phantom follow-
ing Eq. [1].

For the ROSE simulations, the following k-space trajec-
tory was used:

(K(1), K,(t)) = A cos[2mot](cos[2nt + B], sin[2nt + B])
[17]

where t € [0, 1], A is the maximum k-space radius
reached by the trajectory, and o is a frequency. For both
the 64 X 64 pixel and the 256 X 256 pixel cases, a single-
shot trajectory (B = 0 only) was simulated. In practice,
gradient slew-rate limitations will usually require inter-
leaved acquisition for the 256 X 256 pixel case. However,
other simulations have shown that the reconstruction of
single-shot and interleaved ROSE (and spiral) data are very
similar.
For the spiral simulations, the following simple
Archimedean spiral k-space trajectory was used:
(K(1), K,(1)) = At(cos[2mwt + B], sin[27wt + B]) [18]
where, again t € [0, 1]. As with the ROSE simulations,
only single-shot scenarios were simulated. Although spiral
trajectories that make better use of available magnetic field

RMS/Maximum Absolute Differences Between Various GFFT Reconstructions and the GFFT Reconstruction With g = 10, b = 0.5993

for the 642 Spiral Case

q b =04 b =0.5 b = 0.5993 b = 0.6 b =07 b =0.8 b =09
6 0.322/1 0.333/1 0.537/2 - - - -
8 0.310/1 0.219/1 0.101/1 0.102/1 0.254/1 - -
10 0.310/1 0.217/1 0/0 0.016/1 0.211/1 0.307/2 0.410/2

The blank entries indicate cases that were not simulated because they involve parameters well outside the hypothesis of Theorem 1. The
underlined entries involve g and b that fall within the hypothesis of Theorem 1 (note that the b = 0.5 case is on the boundary of the

hypothesis).
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Table 3

Sarty et al.

RMS/Maximum Absolute Differences Between Various GFFT Reconstructions and the Kaiser-Bessel Kernel Regridding Reconstruction

for the 642 Spiral Case

q b =04 b =05 b = 0.5993 b = 0.6 b =0.7 b =0.8 b =0.9
6 8.52/23 8.44/23 8.20/23 - - - -
8 8.53/23 8.54/23 8.54/23 8.54/23 8.50/23 - -
10 8.53/23 8.54/23 8.55/23 8.55/23 8.56/23 8.58/23 8.62/23

See footnote for Table 2.

gradient slew rates are known, the simple spiral serves to
illustrate the properties of the various reconstruction
methods.

Timing code was inserted into the reconstruction code
to measure the CPU time required for each method. The
time to compute the Jacobian weights was not measured,
but since that computation is of O(M) complexity, the time
is not significant. Care was taken to avoid timing of code
that included 1/0. However, it should be noted that com-
putation times varied by up to 20% depending on un-
avoidable system background processes. All reconstruc-
tions were done on a Sun Microsystems (Palo Alto, CA)
Ultra5 computer with 256 MB of RAM running at a clock
speed of 333 MHz. For comparison to array processors, it is
noted that a 512% 2D FFT, computed using the Numerical
Recipes in C algorithm (18) required approximately
1.6 sec.

Theorem 1 restricts g to be larger than 4bw so that b is
restricted to the interval [0.5, g/4] for the theorem to be
valid. We also investigated cases where q and b were
outside the limits covered by Theorem 1. For every GFFT
case tested, root mean square (RMS) and maximum abso-
lute differences between the GFFT reconstruction and the
Kaiser-Bessel regridding reconstruction were computed,
as were differences with the ¢ = 10, b = 0.5993 GFFT
reconstruction that Dutt and Rokhlin (12) have indicated is
somewhat optimal. Differences between direct reconstruc-
tions, the “optimal” GFFT reconstructions, and Kaiser-
Bessel regridding reconstructions were also computed
since the intent of both the GFFT and Kaiser-Bessel regrid-
ding reconstruction is to approximate the sum of Eq. [4].
Finally, differences with the mathematical phantom were
computed, but Gibbs ringing artifact at the phantom’s
edges made the differences difficult to interpret. All dif-
ferences were reported in terms of grayscale values, which
were between 0 (black) and 255 (white).

RESULTS

The Kaiser-Bessel kernel reconstructions required the fol-
lowing computation times: 15.0 and 14.1 s for the 256>
ROSE and spiral images, respectively, and 1.05 and 0.74 s

Table 4

for the 64% ROSE and spiral images, respectively. The 256>
ROSE and spiral GFFT reconstructions both required ap-
proximately 11.8 s for ¢ = 6, 17.0 sec for ¢ = 8, and 23.2 s
for g = 10. The 64? ROSE and spiral GFFT reconstructions
both required approximately 0.7 s for ¢ = 6, 1.0 s for ¢ =
8, and 1.4 s for ¢ = 10. In comparison, the time required
for direct reconstruction was very long. For the 64> ROSE
and spiral reconstructions, 343 and 198 s of CPU time were
required, respectively. The direct 256 ROSE and spiral
reconstructions required overnight CPU time.

Gibbs ringing artifact around the bright phantom edges
produces maximum reconstruction values that, if scaled so
that the average value of the outer ring of the phantom was
255, would be greater than the original phantom maximum
value. When the reconstructions were scaled to have a
maximum value of 255 for display, as they necessarily
would be in practice to avoid loss of reconstructed values,
the overall grayscale values were depressed over the phan-
tom values. As a result, differences between the recon-
structions and the original phantoms tend to be large.
Nevertheless, a smaller difference still implies a higher
reconstruction accuracy. More precise mathematical com-
parisons of the reconstructions are possible, such as nor-
malization based on the integral of the point spread func-
tion. However, the resulting correction would be difficult
to introduce in practice, since the point spread function
depends on many factors, and might result in the discard-
ing of bright image values not due to Gibbs ringing. The
RMS and maximum absolute differences between the Kai-
ser-Bessel kernel reconstructions, the GFFT reconstruc-
tions for ¢ = 10, b = 0.5993, the direct reconstructions,
and the phantom are given in Table 1.

The purpose of both the Kaiser-Bessel regridding
method and the GFFT is to provide an approximate, but
highly accurate, way to compute the sum of Eq. [4] effi-
ciently. A measure of that accuracy may therefore be ob-
tained by comparing the reconstructions to direct recon-
structions. The RMS and maximum absolute differences
between the two reconstruction methods and direct recon-
struction are given in Table 1.

The remaining tables show differences between various
GFFT reconstructions and the GFFT reconstruction with

RMS/Maximum Absolute Differences Between Various GFFT Reconstructions and the GFFT Reconstruction With g = 10, b = 0.5993

for the 2562 ROSE Case

q b =0.4 b =0.5 b = 0.5993 b = 0.6 b =0.7 b =0.8 b =09
6 0.148/2 0.198/2 0.332/2 - - - -
8 0.415/1 0.101/1 0.066/1 0.067/1 0.161/1 - -
10 0.145/1 0.102/1 0/0 0.010/1 0.111/1 0.161/1 0.206/1

See footnote for Table 2.
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Table 5

913

RMS/Maximum Absolute Differences Between Various GFFT Reconstructions and the Kaiser-Bessel Kernel Regridding Reconstructions

for the 2562 ROSE Case

q b =04 b =05 b = 0.5993 b = 0.6 b =0.7 b =0.8 b =0.9
6 0.312/1 0.329/1 0.404/2 - - - -
8 0.313/1 0.320/1 0.324/1 0.324/1 0.323/1 - -
10 0.313/1 0.320/1 0.328/1 0.329/1 0.339/1 0.349/1 0.357/1

See footnote for Table 2.

q = 10, b = 0.5993, and between various GFFT recon-
structions and the Kaiser-Bessel regridding reconstruction.
Of the cases shown, the cases having b = 0.4 and g = 6 lie
outside of the scope of Theorem 1. The cases ¢ = 8, b =
0.7 and ¢ = 10, b = 0.8, 0.9 also lie outside the scope of
Theorem 1. Table 2 reports the RMS and maximum abso-
lute differences between the various GFFT reconstructions
and the GFFT reconstruction with g = 10, b = 0.5993 for
the 64% spiral cases. Table 3 reports RMS and maximum
absolute differences between the various GFFT reconstruc-
tions and the Kaiser-Bessel regridding reconstruction for
the same 64” spiral cases. The results for the 64> ROSE
cases were similar. Tables 4 and 5 report the differences

FIG. 2. a: A 64 X 64 reconstruction of the Shepp and Logan
mathematical phantom using the GFFT with g = 10, b = 0.5993 and
spiral k-space data. b: Absolute difference between the reconstruc-
tion in a and the Kaiser-Bessel regridding reconstruction. Differ-
ences between the Kaiser-Bessel reconstructions and other GFFT
reconstructions that have g and b within the hypothesis of Theorem
1 are similar. c: Absolute difference between the reconstruction in a
and the g = 8, b = 0.5 GFFT reconstruction. Differences of a with
other GFFT reconstructions whose g and b parameters satisfy the
hypothesis of Theorem 1 are similar. d: Absolute difference between
the reconstruction in a and the g = 6, b = 0.5993 GFFT reconstruc-
tion. The large differences visible in b are due to different offsets of
the maximum reconstruction value from the phantom value for the
GFFT and Kaiser-Bessel regridding reconstruction. The offset dif-
ference is approximately 8 grayscale units (see Table 5). This large
offset disappears for larger matrix reconstructions (see Fig. 3).

for the 256* ROSE cases, with the results for the 256 spiral
cases being similar.

Figure 2, for the 64* spiral GFFT reconstruction, and
Figure 3, for the 256” ROSE reconstruction, give some
visual meaning to the numbers presented in the tables. The
Kaiser-Bessel regridding reconstructions for both the
ROSE and spiral 64*> cases were approximately
23 grayscale units brighter than the GFFT reconstructions,
a difference that could be detected visually. The difference
in the two reconstructions was due to higher Gibbs ringing
artifact in the GFFT reconstruction at the top of the phan-
tom in the white border region. The higher reconstruction
value in the bright outer ring, produced by Gibbs ringing,
caused the rest of the image values to be scaled to a lower
value since the reconstructions were scaled so that the
highest reconstruction value was 255. The difference be-
tween the Kaiser-Bessel regridding and GFFT reconstruc-
tions for the 256> datasets were very small, especially
when the GFFT reconstructions use q and b that are within
the hypothesis of Theorem 1.

DISCUSSION

At first glance, Dutt and Rokhlin’s algorithm appears ele-
gant and unique. It certainly is elegant, with Theorem
1 giving an upper limit on the accuracy of the reconstruc-
tions. However, it is not unique. Close inspection of the
method reveals that it is a convolution regridding method
with the following Gaussian convolution kernel:

Ylks, k) = e (ke [19]

with ¢ = 2b/m?*. The window width is ¢/m, and m is the
amount of “oversampling.” That is, an N* image is recon-
structed through the FFT of an (mN)? Cartesian k-space
dataset.

The use of the Gaussian regridding kernel has been
studied by others. In particular, Jackson et al. (11) studied
the m = 2 case with g between 3 and 10 and with b
between 0.0898 and 0.2793. Since none of their parameters
fall into cases covered by Theorem 1, it is not surprising
that they concluded that a Gaussian kernel is not optimal.
Jackson et al. used a Gaussian kernel that was too narrow
to be optimal.

The Kaiser-Bessel method with L = 4 is almost identical
to the GFFT method with g = 8, in terms of computational
time. This is to be expected since sums of the form of Eq.
[13] are the same length in each case. That is, the window
width is 4 in both cases. The equivalent window widths
for g = 6 and g = 10 are 3 and 5, respectively. Also, there
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is very little difference in the complexity of the computer
code, with the regridding code proper being roughly as
complex as the code required to compute the sum of Eq.
[15].

On the basis of the maximum difference between the
phantom and the reconstructions (see Table 1), the GFFT
appears to have a small edge over conventional Kaiser-
Bessel regridding in terms of reconstruction accuracy, es-
pecially for the 64 pixel images. Note that the window for
the GFFT reconstruction reported in Table 1 is 5, while the
window for the Kaiser-Bessel kernel is 4, so it might be
argued that the increased reconstruction accuracy of the
GFFT reported in Table 1 is due to a larger window:.
However, the differences between the g = 10 (window
width of 5) and g = 8 (window width of 4) cases reported
in Table 2 are an order of magnitude or more smaller than
the differences between the GFFT and the Kaiser-Bessel
kernel reconstruction accuracy given in Table 1. Through
Theorem 1, the GFFT is well understood mathematically,
with explicit bounds on the errors involved in the approx-
imation of Eq. [4]. The differences with the direct recon-
structions reported in Table 1 suggest that the error of
approximation of Eq. [4] is smaller for the GFFT than for
the Kaiser-Bessel regridding method.

The results reported in Tables 4 and 5 and Fig. 3 show a
very minor difference in the reconstructions obtained by
either Kaiser-Bessel regridding or the GFFT for 2562 pixel
images whose pixel resolution is similar to the mathemat-

Sarty et al.

FIG. 3. a: A 256 X 256 reconstruction of
the Shepp and Logan mathematical phan-
tom using the GFFT with g = 10, b =
0.5993 and ROSE k-space data. b: Abso-
lute difference between the reconstruction
in a and the Kaiser-Bessel regridding re-
construction. Differences between the
Kaiser-Bessel reconstructions and other
GFFT reconstructions that have g and b
within the hypothesis of Theorem 1 are
similar. c: Absolute difference between the
reconstruction ina and theg = 8, b = 0.5
GFFT reconstruction. Differences of a with
other GFFT reconstructions whose g and
b parameters satisfy the hypothesis of
Theorem 1 are similar. d: Absolute differ-
ence between the reconstruction in a and
the g = 6, b = 0.5993 GFFT reconstruc-
tion. The cause of the banding and cross
patterns seen in the difference images is
not known.

ical resolution as determined by the theoretical point
spread function. The situation for the 64* pixel images is a
little different (see Tables 2 and 3 and Fig. 2). In that case,
the GFFT reconstructions have lower overall grayscale
values as the result of Gibbs ringing caused by ripples in
the point spread function. The Gibbs ringing offset error
may be corrected in any reconstruction method by appro-
priately normalizing the reconstruction, but, as previously
mentioned, such normalization may be difficult to imple-
ment in practice. In spite of the offset, the numbers in
Table 1 indicate a higher reconstruction accuracy for the
GFFT, especially in comparison to direct reconstruction.
This indicates that the Kaiser-Bessel regridding method is
trading reduced Gibbs ringing artifact, at least for the larger
image values, for reduced reconstruction accuracy, possi-
bly as a result of more smoothing in the reconstruction.
Comparisons of the GFFT reconstructions (Tables 2 and
4) show that there is very little variation in the reconstruc-
tion as long as the parameters g and b remain within the
bounds implied by the hypothesis of Theorem 1. The
errors begin to grow substantially when b falls outside the
range [0.5, g/4m] and q is less than 4bmw. The results of
this study, and the independence of the error given by
Theorem 1 on q above 4b, indicate that one should
choose g = 8 to minimize the computational time and b =
0.636 (=8/4w) to minimize the error, as predicted by
Theorem 1. However, the results also indicate that the
selection of ¢ = 6 and b = 0.4, values which are outside
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the hypothesis of Theorem 1, give accurate reconstruction
with shorter computation time than Kaiser-Bessel regrid-
ding.

CONCLUSIONS

The nonuniform FFT of Dutt and Rokhlin (12) has been
extended to two dimensions and applied to the task of
reconstructing MRI k-space data collected on arbitrary tra-
jectories in k-space. A close inspection of the method
reveals it to be a standard convolution regridding method
with a Gaussian kernel. Theorem 1 gives a quantitative
bound on the error involved in the approximation of the
direct reconstruction sum, and following the hypothesis of
the theorem leads to an optimal selection of “gridding
parameters.”

The new reconstruction method, here called the GFFT,
provides reconstructions that appear to be more accurate
than the Kaiser-Bessel regridding method when similar
regridding parameters are chosen. The computation time
of the GFFT is similar to that of the Kaiser-Bessel regrid-
ding method, and may—as it may for the Kaiser-Bessel
method—be reduced through the sacrifice of reconstruc-
tion accuracy. When combined with the results of Jackson
et al. (11), the results obtained here indicate that regrid-
ding using the Kaiser-Bessel function with § = 12 and L =
4 or using the GFFT with ¢ = 8 and b € [0.5, 0.636]
provide equally optimal convolution regridding recon-
struction in terms of convolution function selection. Jack-
son et al. (11) optimized their selection by minimizing
aliasing energy. The optimal selection of the GFFT Gauss-
ian convolution function here was made by minimizing
the reconstruction error as quantified by Theorem 1.

When small, 64” image matrices are used, as is typical in
functional MRI application, our results indicate that the
Kaiser-Bessel kernel leads to smoother reconstructions
with less Gibbs ringing artifact, while the GFFT Gaussian
kernel leads to reconstructions that, overall, are more ac-
curate.
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