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With the advent of event-related paradigms in func-
tional MRI, there has been interest in finding the op-
timal stimulus timing, especially when the interstimu-
lus interval is varied during the imaging run. Previous
works have proposed stimulus timings to optimize ei-
ther the estimation of the impulse response function
(IRF) or the detection of signal changes. The purpose
of this paper is to clarify that estimation and detection
are fundamentally different goals and to determine
the optimal stimulus timing and distribution with re-
spect to both the accuracy of estimating the IRF and
the power of detection assuming a particular hemody-
namic model. Simulated stimulus distributions are
varied systematically, from traditional blocked de-
signs to rapidly varying event related designs. These
simulations indicate that estimation of the hemody-
namic impulse response function is optimized when
stimuli are frequently alternated between task and
control states, with shorter interstimulus intervals
and stimulus durations, whereas the detection of acti-
vated areas is optimized by blocked designs. The stim-
ulus timing for a given experiment should therefore be
generated with the required detectability and estima-
tion accuracy. © 2002 Elsevier Science
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INTRODUCTION

Event-related functional MRI (ER-fMRI) paradigms
involving cognitive tasks or somatosensory stimulation
of relatively brief periods (;1–3 s) have grown increas-
ingly popular over the past few years, due to their
flexibility in studying a variety of neuronal systems. In
many cases, they have allowed the study of tasks that
had not previously been possible with more commonly
used blocked design fMRI paradigms. Certain cogni-
tive tests, for example, require analyses of individual
events that cannot be performed in blocks. In some
2521053-8119/02 $35.00
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studies, the task is inherently brief, such as the process
of swallowing (Birn et al., 1999). Other tasks depend on
the presentation being unpredictable, such as the
study of inhibitory control (Garavan et al., 1999; Ko-
nishi et al., 1997). Functional responses to stimuli can
also be sorted and analyzed based on the subject’s
performance (Brewer et al., 1998; Schacter et al., 1997;
Wagner et al., 1998).

The analysis of these ER-fMRI studies is generally
not as straightforward as blocked design studies,
which can be analyzed by a simple statistical test, such
as a t test. Initially, these ER-fMRI studies mapped the
response to individual events by presenting the stim-
ulus at constant intervals separated by enough time to
allow the evolution of the entire hemodynamic re-
sponse to each stimulus—approximately 12–14 s.
When the interstimulus interval (ISI) was shortened,
the responses overlapped, and for a constant ISI the
functional contrast was decreased (Bandettini et al.,
2000). From simulations and experiments, the optimal
duration between the end of one stimulation and the
beginning of the next for this type of paradigm was
found to be approximately 12 s for a 2-s stimulus du-
ration (SD). This type of constant ISI ER-fMRI design
was first implemented in a cognitive study by Buckner
et al. (1996). The drawback with this design is that
stimuli are presented rather infrequently, leading to
long acquisition times and low statistical power, as
well as problems related to keeping the subject ade-
quately engaged in the task. Later studies showed that
the interstimulus interval can be reduced without a
loss of information by assuming a linear model for the
hemodynamic response and varying the interstimulus
interval (Burock et al., 1998).

With the added flexibility of varying the interstimu-
lus interval, it is not immediately apparent what stim-
ulation timing is optimal or how these variable ISI
event-related designs compared to blocked designs in
their ability to detect activated areas. How often
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should the stimulation or task be performed? Should
the stimulus be alternated between the stimulation
and control state rapidly or more slowly? Some of these
questions have recently been addressed. Dale et al.
showed that the accuracy of estimating the hemody-
namic impulse response function is increased with
short and varying interstimulus intervals, suggesting
that event-related paradigms should be performed
with stimuli alternating between task and control
states as frequently as possible (Dale, 1999). Friston et
al. looked at several different stimulus distributions,
varying from purely stochastic (i.e., random) to purely
deterministic designs, and found that the most efficient
paradigm is a conventional blocked design (Friston et
al., 1999). While there appears at first glance to be a
discrepancy between these two results, in fact both are
correct because they address different problems—the
estimation of the impulse response function, or the
estimation of the activation amplitude assuming an
impulse response function. This difference between de-
tection and estimation has recently been explored fur-
ther by Liu et al. (2001).

The current paper also addresses the difference be-
tween the two goals of detecting activated areas and
estimating the hemodynamic impulse response, specif-
ically examining how often stimulation should be per-
formed and whether the stimulus pattern should be
alternated between stimulation and control states rap-
idly or more slowly to improve either detection or im-
pulse response estimation. The generation of semiran-
dom stimuli by varying the minimum stimulus
duration, ranging from rapidly varying random de-
signs, to more slowly varying blocked designs, is dif-
ferent than that employed by Liu et al., and clearly
demonstrates how detection (assuming a slowly vary-
ing IRF) and IRF estimation rely on different temporal
frequency information. The results of the simulations
performed here with varying ISI can be directly com-
pared to earlier results by Bandettini et al. (2000) for
the case of the optimal stimulus for a constant ISI. The
difference in the frequency information of the stimulus
timing used by the processes of detection (assuming a
fixed IRF) and estimating the IRF is underscored by
analyzing the effect of more realistic noise, as opposed
to ideal white noise. The effect of more realistic, tem-
porally correlated, noise has also been addressed in a
recent study by Burock et al. (2000). Furthermore, this
study expands upon earlier studies by examining the
detectability of all possible stimulus timings for a short
time series, in order to assess the distribution of de-
tectabilities from a stimulus time series. This latter
information is valuable because it gives the experi-
menter an idea of both the maximum estimation accu-
racy and detectability, as well as a sense of how many
random time series need to be generated in order to
have a high likelihood of getting a near optimal stim-
ulus design.
Simulated time series with various patterns of stim-
ulus timing are generated, and the detectability and
accuracy of estimating an impulse response function is
computed for each time series, in order to determine
which stimulation patterns lead to higher detectabil-
ity, and which pattern is best for estimating the hemo-
dynamic impulse response function. These simulations
show both the best detectability and estimation accu-
racy for a given average ISI and stimulus duration, as
well as the distribution of the detectability and estima-
tion accuracy for a particular method of generating the
random stimulus time series. The goal of these simu-
lations is to give an intuitive sense of the tradeoffs for
detection and impulse response estimation for different
stimulus designs.

METHODS

In order to determine how detectability and the ac-
curacy of estimating the impulse response function
depend on the stimulus timing, several classes of stim-
ulus time series with varying interstimulus intervals,
stimulus durations, and ISI distributions were gener-
ated. Specifically, the effect of two variables were stud-
ied: (1) the fraction of the time spent in the task state
compared to the control state (i.e., varying average
ISI’s), and (2) the distribution of stimuli at a fixed
fraction of time spent in the task state, in other words,
how frequently the stimulus time series is alternated
between the task and control. At one extreme is a
blocked stimulus design, where stimuli are presented
for longer durations, alternated with long control peri-
ods; at the other extreme are event-related techniques
with short average ISI’s, where the stimulus pattern is
frequently alternated between task and control states.
In both of these stimulus time series, the fraction of
time spent in the task state is the same, but the dis-
tribution of the stimuli is different. In these simula-
tions, only one task condition is considered, alternated
with a control state. The interstimulus interval is de-
fined as the time between the start of one stimulus and
the start of the next stimulus. The stimulus duration
(SD) is defined as the time that the stimulus spends in
the “task” state (see Fig. 1). For stimuli generated with
a variable ISI, therefore, both the ISI and the SD vary
throughout the imaging run. It is useful to introduce

FIG. 1. Definitions of interstimulus interval (ISI) and stimulus
duration (SD) used in the simulations. ISI is defined as the start of
one stimulus to the start of the next stimulus. SD is defined as the
duration of the stimulus. The minimum stimulus duration (min. SD)
is the smallest stimulus duration in the time series and is used as a
measure of the distribution of the task and control periods (more
blocked vs more rapidly varying).
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an additional parameter, the minimum SD, to charac-
terize the distribution of stimuli, with longer minimum
SDs corresponding to more blocked stimulus patterns,
and shorter minimum SDs corresponding to more rap-
idly varying stimulus patterns. The BOLD responses to
all stimuli were simulated by convolving the stimulus
time series with a gamma-variate function,

I~t! 5 At 8.60e 2t/0.547, (1)

which represents an ideal hemodynamic impulse re-
sponse function. The parameters used in this gamma-
variate function were taken from Cohen et al. (1997) as
empirically determined from a 1-s duration visual
stimulation.

For each simulated time series, two values were
computed—the detectability and the accuracy of esti-
mating the impulse response function. The detectabil-
ity is computed as the inverse of the standard deviation
of the BOLD activation amplitude estimate (Friston et
al., 1999). The accuracy of estimating the hemody-
namic impulse response is computed as the inverse of
the trace of the stimulus pattern’s covariance matrix
(Dale, 1999). For convenience, the derivation of these
quantities is also presented in the appendix.

It should be emphasized that both are problems of
estimation, and therefore both detectability and esti-
mation accuracy are commonly referred to as the “effi-
ciency” of the estimate (Dale, 1999; Friston et al., 1999;
Liu et al., 2001). In fact, the formal basis for assessing
detectability and estimation accuracy, as adopted by
both Friston et al. and Dale et al., is identical. Two key
distinctions between these two efficiencies lie in the
composition of the design matrix; specifically, the num-
ber of regressors being estimated, and the regressors
that are used. First, the estimation of the impulse
response function requires the estimation of several
values, one at each point in the impulse response func-
tion. Detection of functional changes, assuming a fixed
impulse response function shape as is commonly done,
involves the estimation of only one parameter, the am-
plitude, in addition to the nuisance parameters of a
constant baseline and possible linear drift. Second, the
detection of activated areas generally assumes a slug-
gish hemodynamic response, whereas the estimation of
the impulse response function makes no such assump-
tions. In other words, the difference between estima-
tion efficiency and detection efficiency reduces to how
the response is parameterized.

In this paper, “detection” involves the estimation of a
single parameter pertaining to the height of a fixed
shape for the response. This is a fairly narrow defini-
tion of detection, since it is, of course, possible to detect
signal changes, that is distinguish the signal from
noise, for many different parameterizations of the sig-
nal. In the more general sense, this detection can be
assessed by an F statistic. The two extremes of estima-
tion, estimating only one parameter pertaining to the
height of a fixed response or estimating a parameter for
each point in the impulse response function, are ad-
dressed in this paper because both analyses are com-
monly performed in fMRI data analysis, and because it
illustrates the important point that these two efficien-
cies are optimized by different stimulus distributions.
To distinguish these two efficiencies, the accuracy of
estimating the IRF will be called the “estimation accu-
racy” in this paper, while the ability to detect the
response, assuming a gamma-variate impulse re-
sponse function with parameters as determined by Co-
hen et al. (1997), will be called the “detectability.”

In the first simulation, the effect of varying the frac-
tion of time spent in the task state was studied for
different stimulus time series. The average detectabil-
ity and estimation accuracy of randomly generated
stimulus patterns can be computed analytically (Fris-
ton et al., 1999). Of primary interest, however, is the
best possible stimulus pattern that can be reasonably
achieved for the given set of parameters, not a stimulus
time series chosen at random or the average of an
ensemble of randomly generated stimulus patterns.
Therefore, the behavior of detectability and estimation
accuracy on the stimulus timing were studied by sim-
ulating a large number of stimulus patterns. Multiple
stimulus time series with a variable ISI were gener-
ated for a given minimum stimulus duration. The time
series consisted of 256 points, with the time step and
TR fixed at 1000 ms. For each time point, the proba-
bility of being in the task state was a fixed fraction, R.
One thousand stimulus time series were generated for
each of 18 different fractions, R, of the time spent in
the task state, ranging from 0.05 to 0.9. In some of the
stimulus time series, therefore, the task occurred in-
frequently with most of the time spent in the control
state, whereas in others the task occurred more fre-
quently. With this method of generating the stimulus
time series, the ISIs in each of these time series were
distributed geometrically (the discrete analog of the
exponential distribution). The average ISI was com-
puted for each of these time series.

The generation of these variable ISI time courses
was repeated for different minimum stimulus dura-
tions of 1000, 2000, and 4000 ms in order to produce
more blocked-trial-like or more rapidly varying stimu-
lus time series. This minimum stimulus duration con-
strained both the duration of the task period and the
duration of the control period (i.e., a time course with a
minimum SD of 2000 ms would have a minimum task
duration and minimum control period of 2000 ms). The
detectability and estimation accuracy were computed
for each time series. The estimation accuracy compu-
tation assumed the estimation of 9 points of the im-
pulse response function, in addition to a constant base-
line. For comparison, the detectability and estimation
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accuracy from stimulus patterns with a constant ISI
were also computed for a fixed stimulus durations of
1000, 2000, and 4000 ms. The detectability and esti-
mation accuracy at which only 5% of the stimulus time
series had a greater efficiency was computed for 18
average ISI values. This value reflects the peak esti-
mation accuracy or detectability that can be easily
achieved by generating a large number of random time
series.

In the second simulation, the distribution of stimuli
in a time-series was varied by changing the minimum
stimulus durations. Changes in the stimulus time se-
ries from control to task or task to control were allowed
only at time points that are an even multiple of the
minimum stimulus duration. In this way, the distribu-
tion of stimuli within a time series could thus be varied
to produce more blocked-trial-like or more rapidly
varying stimuli, with similar number of task events in
the time series. Sixty-four time series at each of 32
different minimum stimulus durations ranging from 1
to 32 s were generated with an equal number of time
points in the task and control states, and a time series
length of 256 s. The detectability and estimation accu-
racy were computed for each time series.

In the third simulation, the effect of non-white noise
was studied by including either measured fMRI noise
or Gaussian white noise in the calculations of detect-
ability and estimation accuracy. The standard devia-
tion of the Gaussian noise was set equal to the stan-
dard deviation of the measured fMRI noise. The fMRI
noise was derived from baseline resting scans in voxels
shown to be activated in a separate visual stimulation
study (B0:1.5 T, TR: 2000 ms, TE: 40 ms, EPI, resolu-
tion: 3.75 3 3.75 3 4 mm, 100 time points). The noise
time courses from 200 voxels were used as 200 in-
stances of noise. The characteristics of this noise have
been previously reported (Saad et al., 2001) and are
typical of fMRI activation studies. The detectability
and estimation accuracy were computed at 200 differ-
ent instances of Gaussian noise time courses and the
200 instances of fMRI noise time courses and the re-
sults for each type of noise were averaged. The details
of this computation is included in the appendix. This
was repeated for 100 different stimulus time courses at
each of 18 different values of fraction of stimuli in the
task state. In the third simulation, several stimulus
time series of varying ISI with exactly half of the stim-
uli in the task state, and different minimum stimulus
durations (and hence different ISI distributions) were
generated.

The distribution of detectability (D) and estimation
accuracy (E) was further assessed by generating all
possible (232 2 2) possible stimulus patterns from a
short 32-point time series, again with TR 5 1000 ms; D
was computed using 9 points from the gamma-variate
response function, while E was computed for a 9-point
response function (both calculations included the ef-
fects of the mean and linear trend). This computation
took 16 h on a 1 GHz Athlon-based Linux system. The
purpose of this exhaustive calculation was to assess if
the pseudorandom methods of generating stimulus
time series used in other simulations sufficiently spans
the space of all possible stimulus patterns. This ap-
proach also helps determine how many simulations are
necessary to find nearly-optimal stimulus patterns. To
test this, 100 stimulus time series at each of 18 differ-
ent fraction of stimuli in the task state (ranging from
0.05 to 0.9) and 3 different minimum stimulus dura-
tions (1, 2, and 4 s) were generated for a time series
consisting of 32 points, and the resulting detectabilities
were compared to the complete distribution of detect-
abilities.

In addition, for a more realistic 100-point time se-
ries, 14.6 billion pseudorandom stimulus patterns (of
2100 5 1.26 3 1030 possible patterns) were generated
and evaluated in the same way (taking 91 CPU h). This
nonexhaustive 100-time point simulation generated
random bit patterns in one of two ways. The first way
was with Bernoulli trials with P 5 1

2; that is, each time
point had an independent 50% chance of being “on.”
This tends to generate time series with 40–60 stimuli.
Liu et al. have shown that approximate equal balance
between “on” and “off” points should yield the largest
estimatability. The second way of generating 100 point
bit vectors was Bernoulli trials with P 5 1

4. Equal num-
bers of P 5 1

2 and P 5 1
4 trials were used in the simula-

tion. From these results, the joint cumulative distribu-
tion of (D, E) was calculated.

RESULTS

Varying Fraction of Time in the Task State

The dependence of detectability and estimation ac-
curacy on the fraction of time spent in the task state is
consistent with the results previously reported in the
literature (Dale, 1999; Friston et al., 1999; Liu et al.,
2001). The maximum detectability or estimation accu-
racy for a stimulus pattern with a varying ISI occurs
when the number of time points in the task state is
evenly balanced by the number of time points in the
control state (see Fig. 2a). Each point in Figs. 2a–2d is
the detectability or estimation accuracy for a single
stimulus time series. A line is also drawn at 5% from
the maximum (at which 5% of the stimulus time series
have a greater efficiency) to indicate the detectability
and estimation accuracy that can be achieved rela-
tively easily by generating a large number of random
time series and choosing the best one. Figure 2 shows
not only the average and peak detectability and esti-
mation accuracy, but also the distribution of detectabil-
ity and estimation accuracy for randomly generated
stimulus time series at a particular minimum stimulus
duration and average ISI. The estimation accuracy and
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detectability for stimulus time series with a constant
ISI are also shown, allowing a comparison with the
results obtained by Bandettini et al. in their earlier
study of optimal stimulus distributions (Bandettini et
al., 2000), and illustrating the advantages of varying
the ISI when the responses to successive stimulations
overlap.

Varying Distribution of ISI

When the minimum stimulus duration is increased,
causing the signal to be more blocked-trial like, the
maximum detectability increases. In contrast, the es-
timation accuracy decreases for larger minimum stim-
ulus durations. Blocked-trial designs are especially

FIG. 2. (a) Detectability of simulated BOLD signal vs fraction of
(b) Detectability vs average ISI. (c) Accuracy of estimating the impu
with varying ISI. (d) Estimation accuracy vs average ISI. Each point
Black line represents the top 5% of stimulus patterns. The dashe
detectability and IRF estimation accuracy occurs when exactly half t
occurs at an ISI of 2 s for a minimum stimulus duration of 1 s.
poor at estimating the hemodynamic response. This is
in agreement with the results by Dale et al. (1999). The
detectability and estimation accuracy for three values
of minimum stimulus durations, 1000, 2000, and 4000
ms, are plotted in Figs. 3a and 3b. For comparison,
curves for a constant ISI at each of these stimulus
durations are also plotted.

Figures 4a and 4b show the detectability and esti-
mation accuracy, respectively, for stimulus patterns
with an equal amount of time spent in both stimulus
and control states. Again, the detectability is increased
for more blocked-trial like stimuli, whereas the estima-
tion accuracy is decreased. For large stimulus dura-
tions, the time series is essentially a blocked design,
and both the detectability and estimation accuracy are

mulus in the task state for stimulus time series with a varying ISI.
response function vs fraction of signal in the task state for stimuli
resents the detectability or estimation accuracy for one time-series.
ne is the detectability for stimuli with a constant ISI. Maximum
stimuli are in the task state, and half are in the control state, which
sti
lse
rep

d li
he
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similar to that of a constant ISI blocked design. There
is a significant decrease in estimation accuracy if the
stimulus and control periods are forced to vary on a
coarser time scale than the TR. These results imply
that there is a tradeoff between the accuracy of esti-
mating the impulse response function, and the ability
to distinguish this response (or more accurately a re-
sponse matching an assumed shape) from noise.

FIG. 3. (a) Detectability and (b) estimation accuracy vs average I
(dashed line) for 3 different minimum stimulus durations: 1000, 200
for one time series. The line represents the detectability and estim
minimum stimulus durations (SD) are more similar to blocked desig
increases with larger minimum stimulus durations.

FIG. 4. (a) Detectability and (b) estimation accuracy for differen
(E) and with a constant ISI (solid line). For each stimulus time serie
control state. Stimulus patterns with larger minimum stimulus dura
task and control states. Detection increases with larger minimum
minimum stimulus durations (more rapidly varying stimuli).
For stimulus time series with a constant ISI, the
optimal timing for detection of activation (assuming a
specific impulse response function) is a blocked design
with equal time spent in the task and control states.
For a given ISI, detection is maximized with a stimulus
duration equal to one half of the ISI. At a given stim-
ulus duration, however, the optimal ISI is approxi-
mately 14 s for stimulus durations less than 3 s, and

for stimuli with varying ISI (points and solid lines) and constant ISI
nd 4000 ms. Each point is the detectability and estimation accuracy
n accuracy 5% from the maximum. Stimulus patterns with larger
varying more slowly between task and control states. Detectability

inimum stimulus durations for stimulus patterns with varying ISI
xactly half the stimuli are in the task state, the other half are in the

are closer to blocked trial paradigms, varying more slowly between
ulus durations, while estimation accuracy increases with smaller
SI
0, a
atio
ns,
t m
s, e
tion
stim
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approximately 8 s plus twice the stimulus duration for
durations longer than 3 s (Bandettini et al., 2000). The
solid curve in Fig. 4a reflects the maximum detectabil-
ity achievable using a constant ISI equal to the value
on the abscissa.

The Effect of Colored Noise

Figures 5a and 5b shows the peak detectability and
estimation accuracy, respectively, for multiple time

FIG. 5. (a) Detectability and (b) estimation accuracy vs average
results from simulations using white noise; Dashed lines: results fr
lower frequencies. Detectability is reduced for each minimum stim
dependence of the detectability and estimation accuracy on the min
for more blocked-like designs.
courses with varying ISI and a minimum SD of 1, 2,
and 4 s. The solid and dashed lines show the values
obtained in the presence of white noise and fMRI noise,
respectively. The detectability of the fMRI signal was
decreased in the presence of fMRI noise, as compared
to white noise. The accuracy of estimating the impulse
response function, however, was not substantially af-
fected, and even showed a slight increase compared to
white noise. The dependence of the detectability on the
minimum stimulus duration is the same for both types

I for three different minimum stimulus durations (SD). Solid lines:
simulations using measured fMRI noise, which has more power at
s duration, whereas estimation accuracy is slightly increased. The
m stimulus duration remains unchanged, with higher detectability
IS
om
ulu
imu
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of noise, with larger detectability for more blocked-trial
like designs. Similarly, the maximum detectability and
estimation accuracy occurred when the time between
the task and control states was evenly balanced.

Exhaustive Search for Optimal Detectability

Figure 6 shows the distribution of detectabilities ob-
tained from all possible 32-point stimulus time series
as a function of the number of stimuli in the task state.
The mean detectability is indicated, and the other lines
indicate the percentage of stimulus patterns that have
detectability larger than the given value. The optimum
detectability occurs when half of the stimuli are in the
task state. There is a large spread in the detectability,
especially when half of the stimuli are in the task state.
As expected, the 32-point exhaustive simulation shows
that the best detectability (D) (vs Gaussian white
noise) is reached for blocked stimulus patterns in
which approximately 50% of the stimuli are “off” and
50% “on” (see Fig. 6). The slight asymmetry of the
distribution, with a larger mean detectability at longer
durations spent in the task state arise because the
initial points of the response are not ignored. Thus a
stimulus that is constantly “ON” will result in a re-
sponse that slowly increases to a constant value. This
response can be more easily detected than the response
to a stimulus that was always “OFF.”

Figure 7 shows the distribution for the exhaustive
computation of the detectability and estimation accu-
racy for all possible stimulus time series for 32 points
in time. A dotted line indicates the theoretical upper
bound for the accuracy of estimating the IRF as given
by Liu et al. (2001). Computation of the theoretical
upper bound for the detectability, as defined here, was

FIG. 6. Detectability for different fraction of stimuli in the “ON”
(task) state for all possible 32-point time series. Each line indicates
the percentage of stimulus patterns that have detectability larger
than the given value.
not possible since it includes the estimation of a linear
trend. Comparison of the complete distribution of de-
tectability and estimation accuracy (Fig. 7a) with the
detectability and estimation accuracy of time series
generated using the steps described earlier (Fig. 7b)
indicates that by varying both the fraction of time in
the task state and the minimum stimulus duration, a
near-optimal stimulus time series can be relatively
easily obtained. That is, although the distribution of
detectability is large, even when the time between task
and control states is balanced, stimulus time series

FIG. 7. (a) Reversed cumulative distribution q(D, E) for all pos-
sible 32-time-point stimuli; q(D, E) 5 fraction of samples with de-
tectability $ D and estimation accuracy $ E. Grayscale band L is the
set of points where 10L , q , 10(L11), for L 5 21 . . . 28. The dotted
line indicates the theoretical upper bound as computed by Liu et al.
(2001). (b) Detectability and estimation accuracy for 100 stimulus
time series generated at each of 18 different fraction of stimuli in the
task state and three different minimum stimulus durations. Longer
minimum stimulus durations easily produce larger detectabilities.
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generated with a larger minimum stimulus duration
tend to result in a larger detectability.

DISCUSSION

Both detectability and the accuracy of estimating the
impulse response function are maximized when the
time between the task and control states are evenly
balanced. The difference between the detectability and
estimation accuracy becomes evident when the distri-
bution of the stimulus is varied, with blocked stimuli
leading to a higher detectability but poorer accuracy of
estimating the IRF, and more rapidly varying stimuli
being better for estimating the IRF, but being harder to
detect as different from noise. A simple reason for this
is that the detectability is directly related to the am-
plitude of the signal (or more precisely, the amplitude
difference between task and control, since a constant
baseline is also estimated). Longer blocks of stimula-
tion allow more time for the BOLD signal to build up,
resulting in a larger signal change and a larger detect-
ability. The accuracy of estimating the impulse re-
sponse function, on the other hand, depends only on
the stimulus timing pattern, not on the shape of the
response. The fact that the detectability increases for
more blocked-trial like stimulus time series can also be
understood by considering the detection process in
Fourier space. Since the response r(t) is the convolution
of the impulse response I(t) with the stimulus time
series P(t), plus noise, in the frequency domain we have

r~f ! 5 I~f !P~f ! 1 n~f !. (2)

For white noise, the power in n( f ) is constant at all
frequencies. In this case, the detectability is directly
proportional to the squared area under the Fourier
transform of the (detrended) response. The convolution
of the stimulus with the hemodynamic impulse re-
sponse is represented in Fourier space as a low-pass
filter. Detectability is then optimized by making P( f )
be large where I( f ) is largest, which is at low frequen-
cies (0 , f , 0.1 Hz). This is why block designs, which
concentrate as much of P( f ) as possible at low frequen-
cies, are best for obtaining a large D. Approximately
equal numbers of on and off stimuli are needed to keep
the total energy in P( f ) (the integral of P( f )2 over f .
0) as large as possible. This is why the detectability
peaks when half the time is spent in the ON state (see
Fig. 2). This fact is also addressed in Eq. (6) in Liu et al.
(2001). How rapidly the detectability changes when
going from blocked-trial like to more rapidly varying
stimulus patterns depends on the hemodynamic im-
pulse response. If the hemodynamic impulse response
were very short, then the filter is fairly broad, and
stimulus patterns containing higher frequencies result
in similar contrast as stimulus patterns with more low
frequency content. More rapidly varying stimulus time
series would in this case result in almost the same
contrast as more blocked designs. Alternately, if the
hemodynamic response were very long, then the re-
sponse to rapidly varying stimulus patterns would be
attenuated more prominently.

The computations for both detectability and accu-
racy of estimating the impulse response function per-
formed here assume that parameter variance is a good
measure of a regression fit, that the relationship be-
tween task performance and the BOLD signal is linear,
and that there are no serial correlations. fMRI studies
from human subjects will undoubtedly involve a more
complex signal. Studies have shown, for example, that
the noise is colored, with greater noise at lower fre-
quencies (Zarahn et al., 1997). The simulations per-
formed here show that when noise from a resting state
fMRI scan is added to the simulated time series, the
detectability is less than when Gaussian noise is
added. This occurs because the detection of fMRI signal
changes (when a hemodynamic impulse response is
assumed) relies heavily on the information in the lower
frequencies. The estimation of the impulse response
function relies on all frequencies and is therefore not as
affected by lower frequency noise. In fact, the presence
of this low frequency noise is the main reason for
estimating linear drifts in the time series. For very
long imaging runs (.10 min), higher order baseline
trends may need to be removed. Most blocked design
studies do not go to very low frequencies (long ON and
OFF blocks) precisely because of this confound.

Figure 8 shows the reversed cumulative distribution
function q(D, E) from the 14.6 billion samples 100-
point simulation; q(D, E) is the probability that detect-
ability $ D and estimation accuracy $ E both hold. The
D-direction has much longer tails than the E-direction.
This means that finding a stimulus pattern that has a
high E is relatively easy and does not require a lengthy
search through millions or billions of patterns. The
q(D, E) function also shows the tradeoff possible be-
tween achievable D and E; for example, to find a stim-
ulus pattern with D $ 2 mean (D) and E $ 1.5 mean
(E) is possible, but this combination only occurs about
with frequency 1024, meaning about 10,000 simula-
tions are needed to find one such pattern.

While the responses to longer duration stimuli have
been shown to be approximately linear, short duration
stimuli (shorter than 2 s) have been observed to be
larger in amplitude than predicted from a linear model
(Boynton et al., 1996; Friston et al., 1998). The origin of
this nonlinearity is still under investigation (Miller et
al., 2001; Vazquez et al., 1998). The dependence of the
nonlinearity on both the interstimulus interval and the
stimulus duration, however, has not yet been fully
investigated. Therefore, while the detectability for
shorter duration stimuli may be higher in practice
than predicted in these simulations, it is unclear
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whether the same is true for rapidly varied stimuli
with a short minimum stimulus duration. Even though
the simulations performed here involve several as-
sumptions and are a simplified version of the truth,
understanding the dynamics of detection and estima-
tion in the ideal case is an important and necessary
first step before these additional complications can be
incorporated.

Which stimulus timing is optimal for an fMRI study?
It is difficult to arrive at a single answer to this ques-
tion because of the large number of experimental con-
ditions, constraints, and questions. A stimulus pattern
optimal for one type of study may not necessarily be
optimal for another. In the following section, some
general guidelines are presented. In a study where the
expected signal changes are small and where the de-
tection of these signals is of greatest concern, a more
blocked stimulus design is advantageous, assuming of
course that the ideal impulse response used in the
detection closely matches the true impulse response
function in each voxel. This design choice may be lim-
ited by the behavioral task. As mentioned earlier, some
studies require random presentation of stimuli and
cannot be performed in a blocked design. In this case it
is in general best to balance the time between the task
and control states evenly, remembering to vary the ISI
if it is less than the length of the hemodynamic impulse
response (about 14 s). In a study where the impulse

FIG. 8. Reversed cumulative distribution q(D, E) for the 14.6 b
detectability $ D and estimation accuracy $ E. The two marked poi
L is the set of points where 10L , q , 10(L11), for L 5 21 . . . 29.
response function is either unknown, or the precise
shape of the impulse response is desired to study, for
example, differences in the onset delay, rise time, or
response duration, a more rapidly varying stimulus is
more appropriate. The performance of a task may,
however, require a certain amount of time, setting a
lower limit on the stimulus duration, and hence an
upper limit on the rapidity at which the task can be
varied. This stimulus duration is the duration of the
signal producing event (i.e., the duration that the neu-
rons are active), which is not necessarily the same as
the duration that an external stimulus was presented
to the subject.

If both the detection of activated areas and precise
estimation of the impulse response function are impor-
tant, stimulus patterns could be designed for a mini-
mum detection level, maximizing the estimation accu-
racy. Alternatively, two separate studies could be
performed; first one optimized for detection and then
one optimized for estimation, using the fact that the
location of activation has been appropriately deter-
mined. This might be particularly useful when per-
forming subtle modulations of a particular task that
causes only subtle changes of the hemodynamic re-
sponse function. A stimulus time series could also be
generated with a certain minimum stimulus duration,
producing a time series between a blocked and com-
pletely random design. As seen from Figs. 4 and 7b,

n sample 100-point simulation; q(D, E) 5 fraction of samples with
are the mean (D, E) and (2 z mean D, 1.5 z mean E). Grayscale band
illio
nts
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such a design can provide an intermediate value of
detectability and estimation accuracy. Another option
is to generate a stimulus time series with a semi-
random design as recently discussed by Liu et al.
(2001) and Buxton et al. (2000).

The two goals of detection and estimation discussed
above are at the extremes of estimation. In the detec-
tion considered here, only one parameter is estimated,
whereas in the impulse response function estimation,
many parameters are estimated—one for each point in
the impulse response function. An intermediate num-
ber of regressors could be used instead and may pro-
vide a compromise of the efficiency of estimating either
the entire IRF or only one parameter. (In this case,
detectability can be assessed using an F statistic.)
These regressors can be chosen to encompass higher
frequencies in order to model some of the more detailed
features of the impulse response function.

The large simulation of 14.6 billion time series per-
formed above illustrates the tradeoff between estimat-
ing only 1 parameter (D) and 9 parameters (E). The
choice of how many parameters to estimate depends on
at least three factors: TR, the duration of the individ-
ual stimuli/tasks, and the analysis goals. For short TR
(under 3 s), it may not be necessary to have a param-
eter for each time point, since we know that the BOLD
response is slow. For stimuli/tasks that are brief, few
parameters are needed to model the response; in con-
trast, for lengthy stimuli/tasks, or for tasks where the
duration of the subject’s response is variable, then
more parameters are needed to model the MRI data. In
general, one should have a signal model with enough
parameters to account for all the significant variance
in the data. In a fully general model, this can result in
low detectability and high variance in the parameter
estimates. In linear estimation, one can project higher
dimensional parameter estimates onto lower dimen-
sional models and recover the same results as if one
had directly fitted the lower dimensional models from
the data. This fact argues for an analysis strategy that
starts with a general high dimensional fit, and then
reduces to a lower dimensional fit for particular pur-
poses (e.g., detection of any activation is a low dimen-
sional problem, while discrimination between short
and long duration activation is a high dimension prob-
lem). The simulation methodology developed for this
article could be extended to analyze the tradeoffs that
occur during these projections for any given stimulus
pattern.

One method for developing the “optimal” stimulus
time series is to generate a large number of stimulus
time series, varying the times at which the stimuli are
presented, and choose the time series with the desired
detectability and estimation accuracy. As seen in Fig.
7, there is a large spread in the detectability, even at a
given fraction of stimuli in the task state. In this pro-
cess, it is therefore helpful to know what parameters
separate stimuli with better detection or estimation
from those with poor detection or estimation, in order
to constrain the search for the optimal stimulus timing.
Since the simulations indicate that the best detectabil-
ity and impulse response estimation accuracy occur
when the time spent in the task and control states are
evenly balanced, a search for the optimal stimulus time
series could be accelerated by varying the distribution
of stimuli with a task to control ratio of one-to-one.
Furthermore, the simulation where the minimum
stimulus duration was varied indicates that the detect-
ability is improved by choosing a larger minimum stim-
ulus duration (a more blocked design). This can further
constrain the search for an optimum stimulus time
series.

Knowing the general dependence of the estimation
accuracy and detectability on the stimulus design and
average ISI is also important when the optimal stim-
ulus from a signal processing perspective is not the
optimal signal from a neuroscience perspective. For
example, even though a traditional blocked design af-
fords the largest detectability, many studies cannot be
performed in this manner. It is therefore important to
know how much detectability is sacrificed by going to a
more rapidly varying stimulus pattern, in order to find
a good balance between the statistics of the signal and
what is feasible to perform.

CONCLUSION

Recent studies have begun the exploration into the
optimal stimulus timing to use for particular fMRI
studies. Here this development is continued by system-
atically varying both the fraction of time spent stimu-
lating and the distribution of stimuli (i.e., the “blocki-
ness” of the stimulus time series); by studying the
detectability of all possible stimulus time series; and by
studying the effect of more realistic noise. When the
impulse response function is known, or the assumed
value is close to the truth, then detection is improved
by using a blocked stimulus time series. Estimation of
the impulse response function is increased by using
more rapidly varying stimulus time series, with a short
average ISI. This relationship holds even when the
colored nature of the fMRI noise is considered. These
properties help form important guidelines for the de-
sign of experimental paradigms for both the detection
and further characterization of the BOLD fMRI re-
sponse.

APPENDIX

Model of fMRI Signal Changes

Detection of activated regions and estimation of the
impulse response function both require a model for the
expected fMRI signal changes. In general, the fMRI
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signal can be modeled as a linear sum of regressors,
ci[t], in addition to noise, h. Since fMRI measures
changes in the MR signal on top of an arbitrary base-
line, a baseline term, a0, also needs to be estimated.
Often a linear trend, a1t, is included to account for any
slow signal drift that is occasionally observed in fMRI
studies, most likely resulting from slow head motion.

S@t# 5 a0 1 a1t 1 a2c0@t# 1 a3c1@t# 1 . . . 1 h (3)

This signal model can be rewritten in matrix form as,

SY 5 XaY 1 hY , (4)

where the columns of matrix X are the different regres-
sors (constant, linear trend, signal regressors, ci, de-
scribing the fMRI signal), and the vector a contains the
fit coefficients of those regressors. Under the assump-
tion that the noise is temporally uncorrelated, the min-
imum variance unbiased estimator of the regressor
coefficients, a, is (Draper et al., 1998)

aŶ 5 ~X TX!21X TSY . (5)

The significance of this estimate is given by the vari-
ance, computed in this vector representation by the
covariance matrix,

Cov~aY ! 5 s2~X TX!21. (6)

Where s2 is the variance in the time series signal,
estimated by,

ŝ 2 5
1

N 2 p O ~SY 2 XaŶ !2, (7)

where N is the number of time points and p is the
number of regressors. The diagonal elements in the
covariance matrix are the variances of estimating the
coefficients of the regressors (the baseline, the linear
drift, and the regressors describing the fMRI signal).

Detection of Activated Areas

The goal in most fMRI studies is to detect function-
ally “active” areas—that is, areas where there is a
significant signal change correlated with a stimulus or
task. In many fMRI studies using BOLD contrast, the
shape of the signal in response to various stimuli has
been characterized. Assuming a linear system, the
measured MR signal, S[t], can therefore be modeled as
the sum of a scaled version of an ideal hemodynamic
response to the stimulus time series, r[t], in addition to
an unknown baseline a0, a linear trend a1t, and some
noise, h.
S@t# 5 a0 1 a1t 1 a2r@t# 1 h. (8)

The goal is to estimate the coefficients a0, a1, and a2. If
the assumed impulse response function is equal to the
true impulse response function, then this procedure
amounts to choosing the design matrix, X, to maximize
the Rayleigh quotient criterion of Liu et al. (2001),
which maximizes the noncentrality parameter in the F
statistic for detection of a2 Þ 0. Recall that the accu-
racy of estimating the regressor coefficients is given by
the corresponding elements of the covariance matrix.
The “detectability” is therefore defined as

D 5
1

~X TX!2,2
21

. (9)

Note that the accuracy of the estimate for the BOLD
amplitude is determined not only by the measurement
noise, but also by the structure of the experimental
design matrix and the hemodynamic impulse response
function. (In the extreme case, for example, if the stim-
ulus were constantly “on,” then even though the mea-
surement noise may be low, the confidence in an esti-
mate of the BOLD activation amplitude is quite low.)

Estimation of the Impulse Response Function

An additional goal in many studies is to determine
the impulse response function, I[t], that when con-
volved with the stimulus timing, f[t], produces the
measured signal, S[t].

S@t# 5 I@t# p f@t#. (10)

This estimation is mathematically quite similar to the
detection problem described above. The difference is
that instead of assuming a hemodynamic impulse re-
sponse, the shape and amplitude of the impulse re-
sponse are estimated from the data. Each point in the
impulse response function is considered as a regressor,
and has its own regression coefficient.

S@t# 5 a0 1 a1t 1 I0 f @t# 1 I1 f @t 2 1#

1 I2 f @t 2 2# 1 . . . 1 INf@t 2 N# 1 h.
(11)

The amplitudes, In, of the shifted stimulus functions
give the impulse response. In this case, the columns of
the design matrix, X, contain the constant, linear
trend, and the shifted stimuli, f[t]. The covariance ma-
trix gives the accuracy of estimating each point in the
impulse response function, not the amplitude of an
assumed impulse response, as in Eq. (6). The variance
of these estimates therefore depends only on the struc-
ture of the experimental design matrix, X, and not on
the hemodynamic impulse response function.
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One criterion for choosing the best estimate of the
impulse response function is to use the sum of the
errors of each point in the impulse response function.
Since the first two regressors of the matrix X are the
baseline and the linear trend, the sum is computed by
the trace of the submatrix of the covariance matrix, C*,
excluding the first two rows and columns. The recipro-
cal of this normalized variance,

E 5
1

trace~C*!
(12)

C9 5 submatrix~~XTX!21! (13)

is also referred to as the “efficiency,” E (Dale, 1999;
Friston et al., 1999; Josephs et al., 1999).

Colored Noise

The above derivation for the accuracy of parameter
estimates assumes white noise. In the more general
case, the variance of the parameter estimates, given by
the covariance matrix, can be written as,

C 5 ^~X TX!21X Thh TX~XTX!21&

5 ~X TX!21X T^hhT&X~XTX!21,
(14)

where h is the noise vector. For white noise, ^hhT& 5
s2I, where I is the identity matrix and s2 is the mea-
surement noise variance, and Eq. (14) reduces to Eq.
(6). If the noise is not white, then the complete expres-
sion above must be computed. Multiple instances of
noise vectors were used in the expression above to
compute the average. The detectability and estimation
accuracy can then be computed from this covariance
matrix.
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