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Real-Time 3D Image Registration for Functional MRI

Robert W. Cox* and Andrzej Jesmanowicz

Subject head movements are one of the main practical difficul-
ties with brain functional MRI. A fast, accurate method for
rotating and shifting a three-dimensional (3D) image using a
shear factorization of the rotation matrix is described. Com-
bined with gradient descent (repeated linearization) on a least
squares objective function, 3D image realignment for small
movements can be computed as rapidly as whole brain images
can be acquired on current scanners. Magn Reson Med 42:
1014-1018, 1999. © 1999 Wiley-Liss, Inc.
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Subject head movements are a major problem with brain
functional MRI. If two neighboring voxels differ in intrin-
sic brightness by 20%, then a motion of 10% of a voxel
dimension can result in a 2% signal change—comparable
to the blood oxygenation level-dependent (BOLD) signal
change at 1.5 T, subsequent to neural activation (1). If the
movements occur synchronously with the task/stimulus
alternation, false activations may be detected (2). If the
movements are uncorrelated with the task/stimulus alterna-
tion, the motion-induced signal changes can interfere with
the detection of neurally induced signal changes, reducing
the detected volume of activations.

The most common method for dealing with this problem
is image registration—realignment of each image back to
the orientation and location in which it ought to have been
acquired. Several methods are in use for this purpose (3-6).
One major complaint about these techniques is that exist-
ing implementations are slow, so that the image realign-
ment post-processing step takes much longer than the data
acquisition. A basic component of any registration algo-
rithm is the image rotation and shifting method, because
this operation must be carried out several times in the
search for the best movement parameters. In this paper, we
develop a fast technique for three-dimensional (3D) image
rotation and shifting. Combined with gradient descent on a
least squares objective function, we demonstrate that re-
alignment of a 3D image time series can be computed on
inexpensive computers as rapidly as whole brain images
can be acquired on current scanners.

MATERIALS AND METHODS

Eddy et al. proposed the combination of three 2D shearing
operations and Fourier transform-based shifting for accu-
rate high speed 2D MR image rotation (6). The basis for this
method is the following factorization of a general 2D
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(planar) rotation matrix (7-9):

cosd —sind
sin ¢ cos ¢
1 —tan ¥ 1 0|1 —tan¥d
= ) - [l
0 1 sind  1]|0 1

They also pointed out that an arbitrary 3D proper orthogo-
nal matrix can be factored into three 2D rotations, so that a
general 3D image rotation could be accomplished with
nine 2D shears.

Our technique is a generalization of the shear factoriza-
tion concept directly to 3 dimensions. We define the three
basic 3D shear matrices:

1 o B
Sy(e,p)=10 1 0
0 0 1

1 0 O 1 0 O

Sy, B)=|a 1 B
0 0 1 a B 1

Sy, B)=[0 1 0

In the Appendix, we show that any proper orthogonal
matrix A that is not a 180° rotation about a coordinate axis
can be factored into the product of four such 3D shear
matrices. (A 2D 180° rotation also cannot be factored into
three 2D shears; however, a 180° image rotation about a
coordinate axis can be carried out simply by reshuffling
elements of the image array.)

The use of this 3D shear factorization provides the same
advantage that 2D shears do: the elementary operations are
coordinate shifts on 1D rows extracted from the image.
Each 1D row can be processed separately; there is no
crosstalk between the rows when applying such a shear to
an image. For example, applying the x-shear matrix
Si(ay, B1) and the x-translation §; to X, q yields

Xnew Xoid T ®1Yoid T B1Zoig + 91
Ynew| = Youd
Znew, Zoid

Any particular x-row of a 3D image (With ¥ = Yoid = Ynew
and z = z,4 = Znew both fixed) is shifted by the fixed
amount ayy + Bz + 81, which requires interpolating the
row’s data to the new shifted grid.
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A highly accurate and reasonably efficient way to do this
shifting interpolation is with two 1D fast Fourier trans-
forms (FFTs), applying a linear-in-frequency phase shift in
the frequency domain. This method for image rotation is
the full 3D generalization of the method of Eddy et al. (6).
Alternatives to Fourier resampling along each row are
polynomial methods; for example, 3, 5, and 7™ order
Lagrange polynomial interpolation are very similar to
Hamming tapered sinc interpolation over 2w, =3, and
+4, respectively. These methods are considerably faster
than the Fourier method, and the 7t order (heptic) interpo-
lation method is nearly as accurate for many purposes.

Accurate use of the rotation algorithm requires choosing
the axes ordering that results in the least intermediate
image distortion, say as measured by max {|«;|, |Bil]. In our
implementation, the shear factorizations are computed for
all six orderings, and the ordering with the smallest
distortion is selected. In addition, rotations of nearly 180°
require very large intermediate shearing. Because it is easy
to flip a 3D image by 180° about X, y, or z, choosing the
proper flip will make the algorithm more stable for large
rotations by converting the rotation back to a smaller angle.
In our implementation, the flip is chosen to minimize the
net rotation angle 2 cos 1[¥%(1 + A1 + A + Ags)Y?], prior
to the shear factorization. In the registration algorithm
outlined below, large angles and large intermediate shear-
ings are not encountered, but the image rotation software
allows for them for the sake of completeness. The computa-
tional overhead is negligible compared to the many interpo-
lations required.

Functional MRI generally requires only small rotations
and translations: 1-2 degrees and 1-2 voxel dimensions.
These small effects mean that registration of a base image
J(X) to a target image I(x) can be accomplished rapidly by
repeated linearization of the weighted least squares pen-
alty function

E(a) = >, w)[(T[alx) — 1(x)1?,

X

with respect to the motion parameters a € R®, comprising 3
rotation angles and 3 translations (4,10). Here, w(x) is a
nonnegative weighting function and T[a] is the spatial
transformation corresponding to a. Once the best-fit a is
determined, the registered image is I(T[a] 1x). (Repeated
linearization is equivalent to applying a gradient-descent
algorithm to E(a).)

In our implementation, we choose w(x) to be a smoothed
version of the base image J(x). We have also experimented
with choosing w(x) to be inversely proportional to the
image time series variance at x after an initial registration
pass through the data (this weighting cannot be used in
real-time processing). This latter weighting is intended to
minimize the influence of regions with large intrinsic
variability, such as the brainstem and functionally active

Table 1
CPU Time(s) for One Fourier-Resampled 3D Rotation

128 X 128 X 30 256 X 256 X 124

SGI R10000 175 MHz 15 27.0
HP PA—8000 200 MHz 1.3 24.7
Pentium 11 400 MHz 0.8 13.8
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Table 2
CPU Time(s) for One Heptic-Resampled 3D Rotation

128 X 128 X 30 256 X 256 X 124

SGI R10000 175 MHz 1.0 15.8
HP PA—8000 200 MHz 0.6 10.7
Pentium 11 400 MHz 0.5 7.3

areas. Significant improvement in the detection of activated
voxels has not been observed with this type of weighting, but
investigations along this line are continuing.

RESULTS

Table 1 shows the CPU time needed for a single 3D image
rotation using Fourier-based resampling, executed on three
types of Unix workstations. Table 2 shows the CPU times
using the heptic resampling method, which is considerably
faster. We have adopted this method as our default interpo-
lation scheme. The raw speeds of these CPUs, as measured
in peak Mflops attainable with a 1D FFT routine, are
similar. The differences in timing seem to be more related
to compilers, cache, and memory access.

We acquired several MR image time series while the
subject was instructed to move his slowly at will. The
scanner used was a Bruker Biospec 3 Tesla, using single-
shot full k-space EPI on a 96 X 96 matrix, reconstructed to
128 X 128 images, with a 166 KHz bandwidth and a 240
mm field of view. Thirty contiguous 4-mm thick sagittal slices
were gathered covering most of the cerebrum, with TE = 41.6
msec and TR = 3300 msec (110 msec per slice). Eighty
volumes were gathered in each imaging run (264 sec total).

Table 3 shows the average CPU times needed for registra-
tion of these EPI time series to a base image. These CPU
times include initialization of the registration algorithm,
including computation of V,J by finite differences and
Cholesky factorization of the normal equations for the
linearized least squares solution. The motion estimates
from this algorithm were essentially the same (within 0.05°
and 0.04 mm) as those of AIR 3.08 (5), a widely used and
tested software package. Our new algorithm, using its
default heptic interpolation, executed an average of 4.3
times faster than AIR, using its lower accuracy default
trilinear interpolation. The ranges of movement param-
eters were =2° and =2 mm. When viewed in cine mode,
the subject’s movements were quite obvious before registra-
tion, and were much less noticeable after registration.

DISCUSSION

Heptic interpolation is faster than the data acquisition on
all systems tested, showing that accurate real-time 3D

Table 3
CPU Time(s) for 3D Registration of a Time Series Comprising 80
128 X 128 X 30 Images*

Fourier ~ Heptic  Quintic  Cubic
SGI R10000 175 MHz 335.0 2275 213.3 204.7
HP PA—8000 200 MHz 276.2 127.6 115.6 107.0
Pentium 11 400 MHz 162.1 100.7 90.0 83.6

*Acquisition time was 264 sec.
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registration is achievable on commonly available comput-
ers. On a Pentium Il, the implementation using Fourier
interpolation is capable of keeping up with real time.
Slightly faster CPUs could perform real-time registration
with Fourier interpolation on complex-valued images,
which would preserve phase information and keep the full
bandwidth of the MRI data without aliasing (8).

1 —q® a® a® aP

_B(l)
AQ = [5(11)]—1A(1) =10 1 0 b(ll) bgl) b(al)

1 1 1
0 0 1 |[e® ¢ P
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We denote the first transformed matrix ([S]2A) by A®,
the second ([S(V]~* [S{”] "1A) by A®), etc. It is convenient to
start the analysis with A® and determine the subsequent
shear transformations, only coming back to calculate the
first shear at the end. To begin with, we will assume that
the axes ordering (i, j, k) = (3,1, 2), so that the second
shear S{! is an x-shear:

al — bPa® — cPBM  a® — pPa® — PO aP — bPa® — cPW

The registration method described herein is now part of
the real-time functional MRI acquisition and activation
analysis modules within the AFNI package (11,12). In this
venue, registration is performed after each 3D volume is
complete, and the estimated movement parameters are
displayed in a continually updating graph. The real-time
image reconstruction software is a separate program, and
communicates with AFNI using shared memory or TCP/IP
sockets for intra- or intercomputer communications, respec-
tively. Such modularity is designed to make it straightfor-
ward to use the real-time registration and functional detec-
tion system with an entirely different real-time image
acquisition system.

The display of estimated subject head motion during
functional MRI scanning sessions has proved to be a very
useful quality assurance tool. If the estimated movements
are too large, it is possible to reacquire the functional image
time series immediately. For many subjects, we have also
found that feedback from the investigator or scanner
operator reduces the amount of motion significantly. Most
subjects simply don’t have a good proprioceptive feel for
how still they must remain in the magnet. A little verbal
feedback can provide the training needed to gain this
knowledge within a few minutes.

The rotation and registration algorithms are also in-
cluded in command line (batch) programs for offline
analyses, and in a plugin for the interactive AFNI analysis
and visualization program. This software is freely available
from the authors; information can be found at
http://www.biophysics.mcw.edu.

APPENDIX

We show that for any proper orthogonal A, there are four
3D shears so that

[SP]-1[SP] 1[S{M] [SP] A = I or A = SPSPSPSE,

where the shear axes ordering (i, j, k) is some permutation
of (1, 2, 3).

1 1 1
b b b

1 1 1
cM e c

We wish to choose the shear parameters (a®, @) so that
the first row of A@is[1 0 0]. Making the last two elements
of this row equal to zero requires

b ][] [aP

= : [2]

bP c®|(p®] [a®

We denote the 2 X 2 coefficient matrix in Eq. [2] by [AG)]T,
since it is formed by striking out the first row and first
column of A® and transposing the result. Then (a®, W)
are given by

a® a(zl)
= [[ADITT
) a

1 1 '
Bl o

With these shear parameters, the first element of the first
row of A®@ becomes

al  det[a®]

2 — (1) — M) @) (1) 1T1-1 - - -
a” = ay’ — [by’ ¢l [[Auyl']
ad det[AR}})]

Because det[A®] = 1, the first row of A@ can be trans-
formed to [1 0 0] by an x-shear if and only if det[A{}))] =
b{e® — b = 1 (which also guarantees that [Agsl)]T is
nonsingular).

Assuming that this condition is met, the next stage in the
factorization is to apply a y-shear [S?] -1 to A® to make the
second row of the transformed matrix A® equal to [0 1 0].
Reasoning similar to that above shows this can be done if
and only if det[AZ)] = c{ = 1.

The final stage is to apply a z-shear [S{] 1 to A® to make
the third row of A® equal to [0 0 1], which will make the
entire matrix A® equal to the identity matrix I. If the
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transformation to A® is possible, this final stage is also
possible, with a® = c{) and @ = ¢ = 1.

Thus, any matrix A® with det[A®] = 1 can be factored as
a product of three shears SPSPSE) if the elements of A®
satisfy the two conditions below:

b — bPeP =1 and ¢ = 1. (3]

These conditions are clearly not true for general 3D rota-
tion matrices, but they can be forced to be true by applying
an initial z-shear to the rotation matrix A:

1 0 O01[a; a aj

AW =[SP]1A=| O 1 O|fb; by, bs|=

—a®@ —gO® 1][c; ¢, c;

The motivation for using S; here is that both conditions in
Eq. [3] involve the third row of AW, and these elements can
be modified only by a z-shear. Requiring c{ = 1 and c{ =
(bSY — 1)/b{ yields two equations for the shear parameters
(@O, BO):

[4]

a, bz}

a; b

aw)} {02 — (b — 1)/b)

[3(0)

cs— 1

Equation [4] will have a solution if by # 0 and a,b; — by a3 #
0. If both these conditions hold, then A can be transformed to
A® where Eq. [3] holds. Under these conditions, A can thus be
factored into four shears SOS{ SASE).

In a general rotation matrix A, it might not be true that
a,b; — byaz # 0. This is the determinant of the submatrix
Ay (striking out the third row and first column of A),
which arises because the order of application of the first
two shears in the reduction of A to | was to the third and
first rows (S and S{V), respectively. It is possible to
attempt the shear factorization using different axes order-
ings: if (i, j, k) is one of the six permutations of (1, 2, 3), we
can try to transform A to the identity matrix by applying
shears [SP] -1 [$P] 1 [S(M] 1 [S{?] L. This transformation is
possible if det[A;] # 0 and matrix element A; # 0.

Any 3D matrix A with det[A] = 1 and that also has
det[Aq,] = 0 for all i # j will not be able to be factored into
four shears using the technique above. To find all matrices
that satisfy these seven conditions, we used the Grébner
basis package in the computer algebra software Maple V
(Waterloo Maple, Inc., Waterloo, Ontario) to solve the set of
polynomial equations. There is a single two-parameter
family of such matrices:

p 0 0

0 0 (u)t

For such an A to be orthogonal, it must have [y = [v| = 1. If
both p = v = 1, then A = |, and no factorization is needed.

¢; — a;a@ — b,
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Otherwise, exactly two of the diagonal elements of A are
—1and one diagonal element is 1. Such a matrix represents
a 180° rotation about the coordinate axis corresponding to
the diagonal element that equals 1.

For a given axes ordering (i, j, k) not to have a shear
factorization computable by our technique, one of det-
[Aipl = 0 or A = 0 must be true. If A is such that no shear
factorization exists for any ordering, then for each of the six
possible orderings one of these two conditions must hold.
There are 26 = 64 combinations of conditions that would
prevent A from being factored into four shears in all six

a a, as
b, b, b,

C, — 3,00 — b8 ¢, — aza® — byRO

orderings. The previous paragraph analyzed the case where
the conditions det[Ag;)] = O held for all orderings. The
opposite case has Ay; = 0 for all orderings, in which case A
must be diagonal, and the same conclusion follows. One
example of a mixed set of equations would be to require
det[Ag;] = 0 for orderings (i, j, k) = (1, 2, 3), (1, 3, 2), and
(3, 1, 2), and to require Ay; = 0 for the other three permuta-
tions. (Solving this example will result in Eq. [5], below.)

All 64 cases were analyzed using Maple V. For each case,
six equations that would block the shear factorization of A
were selected. Seven additional equations in the system
were det[A] = 1, and the requirement that the rows and
columns of A be pairwise orthogonal. Only three classes of
orthogonal solutions exist: the identity matrix, 180° rota-
tions about a coordinate axis, or matrices that are actually
2D rotations, one example of which is

1 0 0
A=|0 cosd -—sind |, [5]
0 sind cosod

where ¢ is an arbitrary parameter (of course, the identity
matrix and 180° rotations about coordinate axes are special
cases of 2D rotations). If ¢ # , such a 2D rotation matrix
can be factored into three 2D shears (cf. Eq. [1]), so this class
of solutions does not in fact provide any new examples of
matrices that cannot be factored into four 3D shears. It just
shows that Eq. [4] can have a singular coefficient matrix but
still have a solution. In this case, Eq. [4] becomes

0 cosd } [a(o)} {—sin & — (cos b — 1)/sin ¢

0 sind||pO cosd—1

which has the solution @ = 0, B© = (cos ¢ — 1)/sin .
Thus, we have shown that all 3D rotation matrices that are
not 180° rotations about a coordinate axis can be factored
into four 3D shears, using at least one axes ordering.
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Allowing for a translation as well as a rotation is most
easily analyzed by increasing the matrix and vector dimen-
sions to four:

Als
0001

AXgg + S
A= Ee—

Knew = A)N(old = 1

X =

so that the augmented transformation takes Xqq =
[Xold Yoia Zota]" t0 Xnew = AXoia + S, Wheres = [s; s, s3] is
the desired translation vector. In this notation, the (i, j, k) =
(3, 1, 2) factorization of A becomes

0 3, 0 0
A—|SP0|[sP|0][S? [3,]|SS |0 ' [6]
3; 0 0 0

000|1 ||0o0|1 ||0oo0|1 |[000]1

where the parameters (31, d,, 33) are chosen to match the
desired translation vector s. Multiplying out Eq. [6], we find

0 5, [0
s = SPSM |3, + SO0 | + |0
0 o] |5,
S + 49,
= 5, - [7]

O3 + agd; + (agay + Bg)dy

Cox and Jesmanowicz

Solving Eq. [7] yields 8; = s; — a1S,, 8, = S,, and 83 = s3 —
agS1 — BoS2-
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